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На прошлой лекции
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Обоснование механистического описания молекул

В этой лекции:

Молекулярнаямеханика—механистическое описаниемолекул (атомы на пружинках)

Общее понятие о молекулярной механике, обоснование и области применения
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Потенциалы для описания валентных взаимодействий
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Обоснование механистического описания молекул

Квантовохимическое описание молекулы

Часто в вычислительной химии необходимо знать энергию в
определённых точках ППЭ:
минимума, седловой точки, вдоль какого-то сечения и т. д.

E

(Полная) энергия E может быть вычислена из уравнения Шрёдингера:

C1

H1

H2

C2

H3

H4

ĤΨ(R, r) = EΨ(R, r)

Ψ = Ψ(RC1, RC2, RH1, RH2, RH3, RH4, r1, r2, ..., r16)

Это уравнение можно (приближённо) решить, но всегда ли это необходимо?



Обоснование механистического описания молекул

Алгоритмическая сложность

Алогритмическая сложность методов квантовой химии начинается с O(N3
),

в наиболее распространённых не менее O(N4
).

Обозначения O-большое:

O(f(x)) — обозначение того, что эта функция растёт не быстрее, чем ḟ(x), c— некая константа.

O(N) — линейная сложность, «число необходимых операций растёт пропорционально числу
параметров»;

O(N2
) — квадратичная сложность; и т. д.



Обоснование механистического описания молекул

Сравнение алгоритмической сложности

Пример O(N)
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Пример O(N3
) и O(N log2(N)):
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Обоснование механистического описания молекул

Энергия как простая функция координат

Часто в вычислительной химии интересна энергия в определённых
точках ППЭ
минимума, максимума, вдоль какого-то сечения и т. д.

E

Хотелось бы иметь как можно более простую зависимость энергии от координат!
(в идеале с алогоритмической сложностью O(N))

E ≡ V = V(R1,R2, . . . ,RN)

V— потенциальная энергия;



Обоснование механистического описания молекул

«Атомы на пружинках»
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Обоснование механистического описания молекул

«Атомы на пружинках»
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Обоснование механистического описания молекул

Молекулярная механика

Что вместо уравнения Шрёдингера?

Набор простых формул:

Vb(r) =
1

2
kb(r − r0)

2 V(ϕ) =
∞∑
j=0

kj[cos j(ϕ − ϕ0)] Ve =
qaqb
rab

и т.д.

Набор эмпирических параметров — силовое поле:

{kb1, rb1; kb2, rb2; kb3, rb3; . . . }
{ka1, αa1; ka2, αa2; ka3, αa3; . . . }{
kt1,3, φt1; kt2,2, kt2,3, φt2; . . .

}
{σC, εC, σN, εN, . . . }
{q1, q2, q3, q4, . . . }

константы определяют параметры в формулах для разных внутренних координат

Константы не подбираются для каждой молекулы, а обладают (определённой степенью)
переносимости



Обоснование механистического описания молекул

Молекулярная механика - что и зачем

Молекулярная механика — эмпирический метод расчёта энергии молекулярных и
атомных систем, основанная на простом механистическом представлении ППЭ.

Зачем это нужно?

Для очень быстрого (почти мнгновенного) получения сравнительно точной 3D модели
молекул (редакторы молекул);

Для очень быстрого и сравнительно точного расчёта энергии (генерация конформеров);

Для моделирования очень больших молекул (био)полимеров: РНК, белков и т.д.;

Для расчёта макроскопических систем (моделей с большим числом молекул).



Обоснование механистического описания молекул

«Атомы на пружинках»
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Каждая пружинкка соответствует внутренней координате!
и их больше, чем независимых координат, поэтому используются избычтоные внутренние координаты

Набор эмпирических параметров — силовое поле

{
kb1, rb1; kb2, rb2; kb3, rb3; . . .

}
{
ka1, αa1; ka2, αa2; ka3, αa3; . . .

}
{
kt1,3, φt1; kt2,2, kt2,3, φt2; . . .

}
{
σC, εC, σN, εN, . . .

}
{
q1, q2, q3, q4, . . .

}

константы определяют параметры «пружинок» (в формулах для разных внутренних координат)



Обоснование механистического описания молекул

Зачем так сложно?

Зачем так сложно? Почему нельзя использовать «типичные» значения?
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H

H

H

H

1.34 Å

1.08 Å

117°

121.5°

распределение длины «связей C = C» в кристаллах по данным Кембриджской базы структурных данных



Обоснование механистического описания молекул

«Атомы на пружинках»
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Почему так вообще можно?

1. Приближение Борна-Оппенгеймера
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E ≡ V = V(R1,R2, . . . ,RN)



Обоснование механистического описания молекул

Интересны молекулы, а не набор атомов

1. Приближение Борна-Оппенгеймера.
2. Интерес представляют конформации, не очень удалённые от минимумовППЭ!



Обоснование механистического описания молекул

Если ничего не знать

Потенциальную энергию молекулы можно разложить в ряд Тейлора:

V(r) = V(r0) +
dV
dr

dr+
1

2!

d2V
dr2

dr2 +
1

3!

d3V
dr3

dr3 + . . .

Вблизи минимума:

V(r)
∣∣∣
r=r0

= V(r0) + dV
dr dr+

1

2!
d2V
dr2

dr2 +
1

3!
d3V
dr3

dr3 + . . .



Обоснование механистического описания молекул

Если ничего не знать

Потенциальную энергию молекулы можно разложить в ряд Тейлора:

V(r) = V(r0) +
dV
dr

dr+
1

2!

d2V
dr2

dr2 +
1

3!

d3V
dr3

dr3 + . . .

Вблизи минимума:

V(r)
∣∣∣
r=r0

= V(r0) + dV
dr dr+

1

2!
d2V
dr2

dr2 +
1

3!
d3V
dr3

dr3 + . . .



Потенциалы для описания валентных взаимодействий

Гармоническое приближение

Обрываем ряд на квадратичном выражении:

V(r) = V(r0) + dV
dr dr+

1

2!

d2V
dr2

dr2+
1

3!
d3V
dr3

dr3 + . . .

V(r) =
1

2
k (r− r0)

2

V(r) — потенциальная энергия: потенциал [potential]

k— силовая постоянная [force constant]

r— расстояние

r0 — равновесное расстояние



Потенциалы для описания валентных взаимодействий

Закон Гука

V(r) =
1

2
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2

F = −
dV(r)
dr

= −k(r− r0)

0 r
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Потенциалы для описания валентных взаимодействий

Закон Гука

V(r) =
1

2
k (r− r0)

2

F = −
dV(r)
dr

= −k(r− r0)

0 r

r0

Закон Гука



Потенциалы для описания валентных взаимодействий

Закон Гука
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Потенциалы для описания валентных взаимодействий

Гармоническое приближение
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Потенциалы для описания валентных взаимодействий

Молекула H2: «точный» и гармонический потенциалы
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«Точные» значения из: G.C. Lee and E. Clementi, J. Chem. Phys., 1974, 60, 1275, 10.1063/1.1681192
(зкспериментальные спектроскопические данные + потенциал Хиршфельдера)

https:/doi.org/10.1063/1.1681192


Потенциалы для описания валентных взаимодействий

Молекула H2: смещённый гармонический потециал
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение до 3-го порядка

Можно ли улучшить потенциал? Конечно!
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1

2
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2
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение до 3-го порядка при больших r

Можно ли улучшить потенциал? Конечно! Но есть проблема...
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение с производными 2-го и 4-го порядка

Может лучше взять следующий чётный член?
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение с производными 2-го и 4-го порядка, большой масштаб

Может лучше взять следующий чётный член?
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Потенциалы для описания валентных взаимодействий

Разложение до производных 4-го порядка, альтернативные выражения

V(r) =
1

2
k (r− r0)

2
+

1

6
k3 (r− r0)

3
+

1

24
k4 (r− r0)

4

≡

V(r) =
1

2

[
k+ k(3) (r− r0) + k(4) (r− r0)

2
]
(r− r0)

2

Альтернативная форма записи разложения до производной 4-го порядка, потребуется далее.

Коэффициенты k(3) и k(4) включают в себя множители 1
3
и 1

12
.



Потенциалы для описания валентных взаимодействий

Молекула H2: потенциал Морзе

Потенциал Морзе
V(r) = De

(
1 − e−a(r−r0)

)2

De — глубина потенциальной ямы

a =

√
k

2De
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Потенциалы для описания валентных взаимодействий

Разложение функции Морзе

Потенциал Морзе:

V(r) = De

(
1− e−a(r−r0)

)2

Разложение в ряд экспоненты (до 3 степени):

V(r) = De[1− [1− a(r− r0) +
1

2
a2(r− r0)

2 −
1

6
a3(r− r0)

3
)]]

V(r) = De

[
a2 − a3(r− r0) +

7

12
a4(r− r0)

2
]
(r− r0)

2

V(r) =
1

2

[
k + k(3) (r − r0) + k(4) (r − r0)

2
]
(r − r0)

2



Потенциалы для описания валентных взаимодействий

Зависимость константы от прочности связни

Где чья константа ki?

V(r) =
1

2
k (r − r0)

2

0

5

10

15

20

25

30

−0.2 −0.1 0 0.1 0.2

V
,
к
к
а
л
/
м
о
л
ь

r, Å
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(силовое поле ММ2)



Потенциалы для описания валентных взаимодействий

Зависимость константы от прочности связни

Где чья константа ki?
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Потенциалы для описания валентных взаимодействий

Силовые константы для связей C − C

Где чья константа ki?
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Потенциалы для описания валентных взаимодействий

Выражение для общей потенциальное энергии

Начнём записывать общее выражение для потенциальной энергии системы:

V = Vb + . . .

Vb =
1

2

Nb∑
i=1

kb,i(r− r0,i)
2



Потенциалы для описания валентных взаимодействий

Потенциалы для углов

Всё так же!

V(α) = V(0) + dV
dα dα+

1

2!

d2V
dα2

dα2
+

1

3!

d3V
dα3

dα3
+ · · · ⇒

V(α) =
1

2
ka(α− α0)

2

α0 α0



Потенциалы для описания валентных взаимодействий

Силовые константы для углов

Силовые константы для углов (при сопоставимых смещениях) на несколько порядков меньше,
чем для связей

α0 α0



Потенциалы для описания валентных взаимодействий

Выражение для общей потенциальное энергии

Продолжаем записывать общее выражение для потенциальной энергии системы:

V = Vb + Va + . . .

Vb =
1

2

Nb∑
i=1

kb,i(r− r0,i)
2

Va =
1

2

Na∑
j=1

ka,j(α− α0,j)
2



Потенциалы для описания валентных взаимодействий

Перекрестные члены

В рассмотренных потенциалах предполагалось, что изменения внутренних координат
{x} = {ri, αi} — длин связей, углов — независимы друг от друга.

V(x) = V(0) + ∂V
∂x dx +

1

2
∂
2V

∂x2
dx2 + . . .

Т. е. рассматривалась только диагональные элементы матрицы вторых производных:

∂
2V

∂x21

∂
2V

∂x1∂x2
. . . ∂

2V
∂x1∂xN

∂
2V

∂x2∂x1
∂
2V

∂x22
. . . ∂

2V
∂x2∂xN

. . . . . . . . . . . .
∂
2V

∂xN∂x1
∂
2V

∂xN∂xN
. . . ∂

2V
∂x21



которые определяют силовые константы при изменении только одной координаты, когда другие
постоянны.



Потенциалы для описания валентных взаимодействий

Перекрестные члены

Но при разложении в ряд уже для вторых производныхможно учитывать и перекрёстные члены:
как меняется энергия при изменении двух координат одновременно:

V(x1, x2) = V(0) + ∂V
∂x1

dx1 + ∂V
∂x2

dx2 +
1

2

∂
2V

∂x21
dx21 +

1

2

∂
2V

∂x22
dx22 +

1

2
∂
2V

∂x1∂x2
dx1 dx2 + . . .

Например, растяжение связи (x1 ≡ ri) и изменении соседнего с ней валентного угла (x2 ≡ αj)

Таким образом, в силовое поле можно включать и перекрестные члены [“cross terms”],
описывающие скоррелированность изменения энергии при вариации двух параметров:

V(r, α) =
1

2

∂
2V

∂r2
dr +

1

2

∂
2V

∂α
2
dα2

+
1

2

∂
2V

∂r∂α
dr dα ⇒

V(r, α) =
1

2
kb(r − r0)

2
+

1

2
ka(α − α0)

2
+

1

2
kba(r − r0)(α − α0)

kba — константа растяжения связи и (одновременно) изменения угла

при разложении до 3-x производных можно учитывать скоррелированность 3 параметров одновременно и т. д.
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Потенциалы для описания торсионных углов

Торсионный гармонический потенциал

Снова разложение в ряд. Почему нет?

V(ϕ) = V(ϕ0) +
dV
dϕ dϕ+

1

2

d2V
dϕ2

dϕ2
+ . . . ≈

1

2
kt(ϕ− ϕ0)

2
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Функция непериодическая!
При значениях угла ϕ = 60

◦ и ϕ = 180
◦ энергия должна быть одинаковая (минимум),

но с гармоническим потенциалом она абсурдно большая при 180
◦



Потенциалы для описания торсионных углов

Торсионный гармонический потенциал
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Потенциалы для описания торсионных углов

Торсионные потенциалы

Тогда надо разложить в ряд, подходящий для периодических функций!

V(ϕ) =
∞∑
j=0

kj[cos j(ϕ− ϕ0)]

Ряд Фурье!

Где его оборвать?

V(ϕ) =
1

2
kt1[1 + cos(ϕ− ϕ0)] +

1

2
kt2[1− cos 2(ϕ− ϕ0)] +

1

2
kt3[1 + cos 3(ϕ− ϕ0)]
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Торсионные потенциалы

V(ϕ) =
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2
kt1[1 + cos(ϕ− ϕ0)] +
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2
kt2[1− cos 2(ϕ− ϕ0)] +

1
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kt3[1 + cos 3(ϕ− ϕ0)]

Нужны ли все три слагаемых?
Этан:
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Торсионные потенциалы

V(ϕ) =
1

2
kt1[1 + cos(ϕ− ϕ0)] +
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kt2[1− cos 2(ϕ− ϕ0)] +

1

2
kt3[1 + cos 3(ϕ− ϕ0)]

Нужны ли все три слагаемых?
Бутан, только потенциал для угла C C C C:
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Потенциалы для описания торсионных углов

Торсионные потенциалы

V(ϕ) =
1

2
kt1[1 + cos(ϕ− ϕ0)] +

1

2
kt2[1− cos 2(ϕ− ϕ0)] +

1

2
kt3[1 + cos 3(ϕ− ϕ0)]

Нужны ли все три слагаемых?
Бутан, потенциал для всех 9 связей:
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Потенциалы для описания торсионных углов

Энергия вращения в бутане
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из данных https:/www.sas.upenn.edu/ rachelmr/EthaneButane.html
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Потенциалы для описания торсионных углов

Выражение для общей потенциальной энергии

Продолжаем записывать общее выражение для потенциальной энергии системы:

V = Vb + Va + Vt + . . .

Vb =
1

2

Nb∑
i=1

kb,i(r − r0,i)
2

Va =
1

2

Na∑
j=1

ka,j(α − α0,j)
2

Vt =

Nt∑
l=1

(
1

2
kt1,l[1 + cos(ϕ − ϕ0)] +

1

2
kt2,l[1 − cos 2(ϕ − ϕ0)] +

1

2
kt3,l[1 + cos 3(ϕ − ϕ0)]

)



Потенциалы для описания торсионных углов

Несобственные диэдральные углы

φ = 56.2°

Чаще всего используется обычное гармоническое приближение:

Vit(ϕ) =
1

2
ka(ϕ − ϕ0)

2



Потенциалы для описания торсионных углов

Валентные и невалентные взаимодействия

V = Vb + Va + (Vab) + Vt + (Vit) + . . .︸ ︷︷ ︸
Валентные взаимодействия

+ VvdW + Vel + . . .︸ ︷︷ ︸
Невалентные взаимодействия

Для 1,2- и 1,3- атомов энергия невалентных взаимодействий не рассчитывается
(уже включена в валентные);

Для 1,5- и дальше — рассчитывается всегда;

Для 1,4- энергия:

рассчитывается стандатрным образом (чаще всего);
шкалирутся на определённую величину (0 < x < 1);
не рассчитывается (редко).
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Ван-дер-Ваальсовы взаимодействия

Диполь и дипольный момент

δ+1
r

δ−2

Электрический диполь

~µ =~r1δ1 +~r2δ2

Чаще всего дипольный момент рассматривают для систем с |δ+1 | = |δ−2 |
т. е. тех, у которых монопольный момент – общий задяд – равен 0



Ван-дер-Ваальсовы взаимодействия

Диполи из многих зарядов

На каких рисунках µ 6= 0?

δ/2− δ+ δ/2−

D∞h

δ/2+

δ−

δ/2+

C2v

δ+

δ/4−

δ/4− δ/4−

δ/4−

Td

µ = 0, если в системе присутствует i, и/или больше одной оси Cn



Ван-дер-Ваальсовы взаимодействия

Диполи из многих зарядов

На каких рисунках µ 6= 0?
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δ/2+
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Ван-дер-Ваальсовы взаимодействия

Диполи из многих зарядов
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Ван-дер-Ваальсовы взаимодействия

Диполь-дипольные взаимодействия

На каких рисунках взаимодействие выгодное (притяжение)?

δ+

δ− δ+

δ−

a:

притяжение

δ+

δ−

δ+

δ−

b:

отталкивание

δ+ δ− δ+ δ−

c:

притяжение

δ+ δ− δ+δ−

d:

отталкивание



Ван-дер-Ваальсовы взаимодействия

Диполь-дипольные взаимодействия

На каких рисунках взаимодействие выгодное (притяжение)?

δ+

δ− δ+

δ−

a: притяжение

δ+

δ−

δ+

δ−

b: отталкивание

δ+ δ− δ+ δ−

c: притяжение

δ+ δ− δ+δ−

d: отталкивание



Ван-дер-Ваальсовы взаимодействия

Диполь-дипольные взаимодействия

δ2
+

δ1
−

δ3
−

δ4
+

θ1

θ2

φ
r

A

B

C

D

Vdd = −
2

4πε0

µ1µ2

r3
(cos θ1 cos θ2 −

1

2
sin θ1 sin θ2 cosϕ)



Ван-дер-Ваальсовы взаимодействия

Наведённый диполь

µ = 0



Ван-дер-Ваальсовы взаимодействия

Наведённый диполь

µ = 0



Ван-дер-Ваальсовы взаимодействия

Наведённый диполь

µ 6= 0



Ван-дер-Ваальсовы взаимодействия

Взаимодействие мнгновенного и наведённого диполей

t = 0

V ∝
1

r6

Эффект возникает из за скоррелированного движения электронов —
электронной корреляции. (важный термин в квантовой химии, неоднократно встретится в дальнейшем)

Есть для любой пары атомов, выше для более поляризуемых электронных оболочек.

Подобный тип взаимодействия всегда выгоден для системы: понижает энергию.
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Ван-дер-Ваальсовы взаимодействия
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Ван-дер-Ваальсовы взаимодействия

Потенциал Леннарда-Джонса

VLJ = ε

[(
r0
r

)12

− 2

(
r0
r

)6
]

= 4ε
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σ

r
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−
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Ван-дер-Ваальсовы взаимодействия

Потенциал Букингема

V6−exp = Ae−Br −
C

r6

VB = ε

[
e−r/r0 −

( r0
r

)6
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Ван-дер-Ваальсовы взаимодействия

Потенциал Букингема

VB = ε
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Ван-дер-Ваальсовы взаимодействия

Расчёт дисперсионных взаимодействий для пар атомов

VLJ = ε

[(
r0
r

)12

− 2

(
r0
r

)6
]

Параметры в силовых полях: r0, ε:

Тип атома R0, Å ε, ккал/моль σ, Å 2rvdW, Å
H (неполярный) 2.64 0.022 2.35 2.40
С (алькильный) 3.70 0.200 3.30 3.40
С (ароматический) 3.98 0.070 3.55 3.40
S (тиольный) 4.30 0.585 3.83 3.60

R0(AB) =
R0(A) + R0(B)

2
: R0(HnpCar) =

2.64 + 3.98

2
= 3.31

ε(AB) =
√

ε(A)ε(B) : ε(HnpSth) =
√
0.022 · 0.585 = 0.113



Ван-дер-Ваальсовы взаимодействия

Энергия вращения в бутане
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из данных https:/www.sas.upenn.edu/ rachelmr/EthaneButane.html
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Ван-дер-Ваальсовы взаимодействия

Расчёт дисперсионных взаимодействий для модельной системы



Электростатические взаимодействия

Электростатические взаимодействия

V = Vb + Va + (Vab) + Vt + (Vit) + . . .︸ ︷︷ ︸
Валентные взаимодействия

+ VvdW + Vel + . . .︸ ︷︷ ︸
Невалентные взаимодействия

Закон Кулона:

Vel =
1

4πε0

q1q2
r12



Электростатические взаимодействия

Электростатические взаимодействия электронных плотностей

Vel =
1

4πε0

1

2

∫
ρ(r1)ρ(r2)
|r1 − r2|

dr1 dr2



Электростатические взаимодействия

Электростатические взаимодействия точечных зарядов

Vel =
1

4πε0

1

2

N∑
i=1

N∑
j6=i

qiqj
rij

=
1

4πε0

N∑
i=1

N∑
j=i+1

qiqj
rij



Электростатические взаимодействия

Частичные заряды

Откуда брать частинчые заряды на атомах?

Из данных квантовой химии
Параметризовать по наблюдаемым свойствам



Электростатические взаимодействия

Простейшая модель молекулы воды

O

H H
+0.41

−0.82

+0.41

1.0 Å

109.47°

1.0 Å

модель SPC (Simple Point Charge)

O

H H104.5°

0.96 Å 0.96 Å

Экспериментальные данные



Электростатические взаимодействия

Модели молекулы воды с разным числом частичных зарядов

O

H H
3-точечная

O

H H
M

4-точечная 6-точечная

O

H H
M

LL

5-точечная

O

H H

LL

Table: Модели молекулы воды семейства TIPnP

TIP3P TIP4P TIP5P
r(OH),Å 0.9572 0.9572 0.9572
r(OM),Å 0.15
r(OL),Å 0.70
HOH,◦ 104.52 104.52 104.52
HOL,◦ 109.47
q(H) 0.417 0.52 0.241
q(O) -0.834
q(M) -1.04
q(L) -0.241



Электростатические взаимодействия

Поляризуемые силовые поля

Модель точечных зарядов не учитывает поляризуемость молекул
т. е. изменени электронной плотности под влиянием окружения

0. Aδ+; δ+ = const
обычное (неполяризумое) силовое поле;

1. Aδ+; δ+ 6= const
флуктуирующие заряды [fluctuating charges]:
Величины зарядов уравновешивается в процессе расчёта
например, заряду приписывается фиктивная масса и величина заряда таким образом «двигается»;

2. Aδ1+···δ2+:
осцилляторы Друде [Drude oscillators], «заряды на пружинках»
Заряд делится надвое, и второй как-бы на пружинке.
т. е. описывается потенциалом, определяющим атомную поляризуемость
α = q2D/kD.

3. A→ (мультипольное разложение)
постоянныое (анизотропное) распределение ρ(r): мультипольное разложение,
изменяемый поляризуемый вклад: наводимй диполь µ,
Величина µ зависит от электростатического поля в точке.



Электростатические взаимодействия

Проблема дальнодействующих потенциалов

10 Å

30 Å

Дисперсионные взаимодействия: V(r) ∝ −
1

r6
Учитываются до 8–12Å

Электростатические взаимодействия: V(r) ∝
1

r
Нужно учитывать до 30–120Å



Электростатические взаимодействия

Общие представления о методе Эвальда

Метод Эвальда — быстрый способ (почти) точного расчёта Vel

работает только для периодических систем: кристаллов, периодических граничных условий

Заряды в периодической 1D ячейке: ячейка [0, L] повторяется до бесконечности

0
L 2L

r

Необходимо просуммировать кулоновское взаимодействие для всех зарядов (i, j) и для всех ячеек (n):

V =
1

2

∞∑
n

′ N∑
i

N∑
j

qiqj
rij + nL

(i 6= j|n = 0)

Суммирование переодической функции через ряд (Фурье) сложно, потому что плотность зяряда— δ-функция:

ρi(r) = qiδ(r − ri)

ρi(r) = qi в точках ri и равна 0 во всех остальных точках



Электростатические взаимодействия

Общие представления о методе Эвальда

Метод Эвальда — быстрый способ (почти) точного расчёта Vel

работает только для периодических систем: кристаллов, периодических граничных условий

Заряды в периодической 1D ячейке: ячейка [0, L] повторяется до бесконечности

0
L 2L

q

r

Необходимо просуммировать кулоновское взаимодействие для всех зарядов (i, j) и для всех ячеек (n):

V =
1

2

∞∑
n

′ N∑
i

N∑
j

qiqj
rij + nL

(i 6= j|n = 0)

Суммирование переодической функции через ряд (Фурье) сложно, потому что плотность зяряда— δ-функция:

ρi(r) = qiδ(r − ri)

ρi(r) = qi в точках ri и равна 0 во всех остальных точках



Электростатические взаимодействия

Общие представления о методе Эвальда

Если бы можно было заменить заряды на гладкие функции, например, Гауссового типа:

0
L 2L

q

ρi(r) = qi

(
η
2

π

) 3
2

e−η
2
(r−ri)

2

гауссиана с премножителем интегрируется в 1, т. е. заряд под функцией интегрируется в qi,

то суммировать через ряд очень просто:

E1D =
1

2L

∑
m 6=0

exp
(
−k2m/(4η

2
)
)

k2m

N∑
i=1

N∑
j=1

qiqj cos
(
kmRij

)
, km =

2πm

L
, Rij = xi − xj.

При этом m обычно 3–6, и почти никогда не превосходит 10.

Проблема: это не та же энергия, которая получается из-за точечных зарядов!
«Хвосты» гауссиан на другом расстоянии, чем точечные заряды



Электростатические взаимодействия

Метод Эвальда

Если и вычесть в точке каждого заряда функцию (гауссового типа) с интегральным зарядом qi:

0 L 2L

(a)

(b)

(c)

ρi(r) = qiδ(r − ri) (a)

ρi(r) = −qi

(
η
2

π

) 3
2

e−η
2
(r−ri)

2

(c)

Тогда (a) = (b) + (c); но аналог суммы для (c) легко вычислить через ряд Фурье



Электростатические взаимодействия

Метод Эвальда

Но сумма для (a) не равна сумме для (c) Они отличаются на (b)!

0 L 2L

(a)

(b)

(c)

Идея метода Эвальда:

1. Вычисляем энергию взимодействий через (c): формально от r = 0 до r = ∞;

2. Вычисляем поправку к этой энергии через прямую сумму функций (b) до какого-то расстояния rcut;

3. Скалываем периодическую энергию и поправку, сглаживая поправку до расстояния rcut.

1: считается относительно быстро и хорошо параллелится; 2: если выбрать rcut небольшим, считается быстро



Электростатические взаимодействия

Формула Эвальда для 3D

(b)

(c)

На практике «подмешивание» поправки определяется параметром κ, а её сглаживание— через функцию erfc,
а rcut — максимальным вектором ячейки n (т. е. фактически максимальным периодом повторямеости):

V =
1

2

N∑
i=1

N∑
j=1

∑
n

′ qiqj
|rij + n|

erfc(κ|rij + n|) +
1

πL3
∑
k6=0

qiqj

(
2π

k

)2

e−k2/4κ
2

cos
(
k · rij

)−

−
κ

√
π

N∑
i=1

q2i +
2π

3L2

∣∣∣∣∣∣
N∑

i=1

qiri

∣∣∣∣∣∣
2

Формула приведена для иллюстрации, первое слагаемое в больших скобках — прямая сумма (поправка),
второе — ряд Фурье (сумма в обратном пространстве); последние два члена — поправки на учтённые два
раза взаимодействия.

erfc(x) =
2

√
π

∞∫
x

e−t2 dt

0

0.5

1

1.5

2

−2 −1 0 1 2



Электростатические взаимодействия

Примеры описания силовых полей (1)

##############################
## ##
## Force Field Definition ##
## ##
##############################

forcefield MM2-1991

bondunit 71.94
bond-cubic -2.0
bond-quartic 1.25 !! not in original MM2
angleunit 0.02191418
angle-sextic 0.00000007
strbndunit 2.51118
opbendtype ALLINGER
opbendunit 0.02191418
opbend-sextic 0.00000007
torsionunit 0.5
vdwtype BUCKINGHAM
radiusrule ARITHMETIC
radiustype R-MIN
radiussize RADIUS
epsilonrule GEOMETRIC
a-expterm 290000.0
b-expterm 12.5
c-expterm 2.25
vdw-14-scale 1.0
chg-14-scale 1.0
electric 332.0538
dielectric 1.5

V = ε

Ae−B
(

r
r0

)
− C

( r0
r

)6



εXY =
√
εXεY



Электростатические взаимодействия

Примеры описания силовых полей (2)

#############################
## ##
## Atom Type Definitions ##
## ##
#############################

atom 1 C ”CSP3 ALKANE” 6 12.000 4
atom 2 C ”CSP2 ALKENE” 6 12.000 3
atom 3 C ”CSP2 CARBONYL” 6 12.000 3
atom 4 C ”CSP ALKYNE, C=C=O” 6 12.000 2
atom 5 H ”NONPOLAR HYDROGEN” 1 1.008 1
atom 6 O ”-O- ALCOHOL, ETHER” 8 15.995 4
atom 7 O ”=O CARBONYL” 8 15.995 1
atom 8 N ”NSP3” 7 14.003 4
atom 9 N ”NSP2 AMIDE” 7 14.003 3
atom 10 N ”NSP” 7 14.003 1

################################
## ##
## Van der Waals Parameters ##
## ##
################################

vdw 1 1.9000 0.0440
vdw 2 1.9400 0.0440
vdw 3 1.9400 0.0440
vdw 4 1.9400 0.0440
vdw 5 1.5000 0.0470 0.915
vdw 6 1.7400 0.0500
vdw 7 1.7400 0.0660
vdw 8 1.8200 0.0550
vdw 9 1.8200 0.0550
vdw 10 1.8200 0.0550



Электростатические взаимодействия

Примеры описания силовых полей (3)

#####################################
## ##
## Van der Waals Pair Parameters ##
## ##
#####################################

vdwpair 1 5 3.3400 0.0460
vdwpair 1 36 3.3370 0.0460
vdwpair 2 21 2.3400 1.1000
vdwpair 2 23 2.3400 0.4000
vdwpair 2 24 2.3400 1.0000
vdwpair 2 28 2.3400 1.0000
vdwpair 6 21 1.8300 1.3000
vdwpair 6 23 1.8300 0.6000



Электростатические взаимодействия

Примеры описания силовых полей (4)

##################################
## ##
## Bond Stretching Parameters ##
## ##
##################################

bond 1 1 4.400 1.5230
bond 1 2 4.400 1.4970
bond 1 3 4.400 1.5090
bond 1 4 5.200 1.4700
bond 1 5 4.600 1.1130
bond 1 6 5.360 1.4020

################################
## ##
## Angle Bending Parameters ##
## ##
################################

angle 1 1 1 0.450 109.47 109.51 109.50
angle 1 1 2 0.450 109.47 109.51 109.50
angle 1 1 3 0.450 107.80 109.90 110.00
angle 1 1 4 0.450 109.47 112.40 109.00
angle 1 1 5 0.360 109.39 109.41 110.00
angle 1 1 6 0.700 107.50 107.70 107.40
angle 1 1 8 0.570 109.47 108.80 109.50
angle 1 1 9 0.500 109.28 110.78 109.28
angle 1 1 11 0.650 109.50 107.50 109.50
angle 1 1 12 0.560 108.20



Электростатические взаимодействия

Примеры описания силовых полей (5)

########################################
## ##
## Atomic Partial Charge Parameters ##
## ##
########################################

charge 16 1.0000
charge 30 1.0000
charge 39 1.0000
charge 47 -0.5000

#####################################
## ##
## Bond Dipole Moment Parameters ##
## ##
#####################################

dipole 1 2 0.3000 0.500
dipole 1 3 0.3000 0.500
dipole 1 4 0.7500 0.500
dipole 1 6 0.4400 0.500
dipole 1 8 0.0400 0.500
dipole 1 9 1.4700 0.500
dipole 1 11 1.8200 0.500
dipole 1 12 1.9400 0.500

Vdd = −
2

4πε0

µ1µ2

r3
(cos θ1 cos θ2 −

1

2
sin θ1 sin θ2 cosϕ)
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