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Этапы моделирования

Этапы расчёта: общие для молекулярной механики и квантовой химии

5. Проверка сходимости

1. Метод + базис (кв.х.)
Силовое поле (ММ)

2a. Координаты атомов
2b. (Молекулярный граф)

3. Расчёт энергии

6. Вычисление 2-х производных

4. Вычисление градиента

7. Смещение атомов

9. Расчёт других свойств

8. Вычисление 2-х производных
Расчет частот колебаний

Стоп

Оптимизация геометрии

ОК



Этапы моделирования

Для ММ: 1. Силовое поле

Силовые поля для различных случаев (1)

Для малых молекул
Более сложные потенциалы, более точная энергия

MM2, MM3, MM4 – «классические» силовые поля,
разработанные Н. Эллинджером1

MMFF: MMFF94 – разработано в компании Merck на основе MM32

GAFF / GAFF2: “General Amber Force field”, силовое поле AMBER, только
более универсальное2

UFF: “Universal force field”2 , параметры задаются для атомов, остальные
вычисляются

Для макромолекул (белки, липиды и т. д.)
Более простые потенциалы, быстрее считаются

GROMOS (из пакета программ GROMACS)

CHARMM (из пакета CHARMM)

AMBER

OPLS-AA

1У. Буркерт, H. Эллинджер, Молекулярная механика. Пер. с англ. - М.: Мир, 1986.
2Доступны в openbabel
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Для ММ: 1. Силовое поле

Силовые поля для различных случаев (2)

Поляризуемые силовые поля:
(с непостоянными зарядами)

Drude

Amoeba

Для расчёта энергии реакций:
Позволяют обойти ограничение ММ на постоянство молекулярного графа

ReaxFF

Для расчёта энергии решётки кристаллов:
Потенциалы валентных взаимодействий вообще не считаются

UNI из программы Mercury
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Этапы моделирования

Для ММ: 1. Силовое поле

Силовое поле MMFF94

Пример силового поля:

MMFF94—«Хороший выбор по умолчанию для органических молекул»
(с сайта программы Avogadro)
Хорошие геометрии и энергии за счёт (относительно) сложных потенциалов
валентных взаимодействий).

Vb(r) =
1

2
143.9325kb(r − r0)

2
(1 + cs(r − r0) +

7

12
c2s (r − r0)

2
)

cs: кубическая константа

Va(θ) =
1

2
0.043844ki(θ − θ0)

2
(1 + cb(θ − θ0))

cb: кубическая константа

Vba(rab, rbc, θ) = 2.51210(kab∆rab + kbc∆rbc)∆θ

kab, kbc : константы сгиба-растяжения
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Координаты атомов и молекулярный граф

Координаты — обычно декартовы, откуда угодно.

Часто можно использовать базы данных, или даже коды типа
SMILES: CC(C)Cc1ccc(cc1)[C@@H](C)C(=O)O
⇒

Молекулярный граф: матрица связанности: с типами связей.

N

H

H

C

H

H

C

O

O H
HN

O

NH

CH3

O

O N

N N

O

NN

Может вычисляться автоматически, но нужно проверять!
Автоматически по элементу, межатомным расстояниям и числу связей

В силовом поле именно типы атомов + типы связей определяют
силовые постоянные, равновесные расстояния, заряды на атомах и т.д.
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3. Расчёт энергии

Вмолекулярноймеханике энергия вычисляется по простымформулам:

V = Vb + Va + Vt + (Vit) + Ve + Vvdw + . . .

Расчёт изолированных молекул в ММ — очень быстрый шаг
простые формулы:

Vb(r) =
1

2
kb(r − r0)

2
(. . . )

Va(α) =
1

2
ka(α− α0)

2
(. . . )

Vt(ω) = kt,3[1 − cos 3(ω − ω0)] + [. . . ]

Алгоритмическая сложность O(N)

Ve(r) =
1

4πε0

q1q2
r12

Vvdw(r) = ε

[(
r0
r

)12

− 2

(
r0
r

)6
]

Алгоритмическая сложность O(N2
)

При этом нет проблем сходимости Ve и Vvdw.

Все парные взаимодействия считаются,
алгоритмическая сложность O(N2

) не проблема для N = 200–1000 и 100 шагов
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Этапы моделирования

3. Расчёт энергии

Вмолекулярноймеханике энергия вычисляется по простымформулам:

V = Vb + Va + Vt + (Vit) + Ve + Vvdw + . . .

Для макроскопических систем N = 1000 − 10000 также сравнительно
быстро, но обычно (в молекулярной динамике и Монте-Карло)
10000–1000000 шагов.
обычно ещё более простые формулы:

Vb(r) =
1

2
kb(r − r0)

2

Va(α) =
1

2
ka(α− α0)

2

Vt(ω) = kt,3[1 − cos 3(ω − ω0)] + [. . . ]

Алгоритмическая сложность O(N), просто их больше

Vvdw(r) = ε

[(
r0
r

)12

− 2

(
r0
r

)6
]

Алгоритмическая сложность O(N2
) → O(N) из-за максимального радиуса

Ve(r) =
1

4πε0

q1q2
r12

→ метод Эвальда

Аалгоритмическая сложность O(N2
),

для варианта PME (particle mesh Ewald) O(N log N)
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3. Расчёт энергии

Оптимизация геометрии

Оптимизация (от лат. optimus — «наилучший») — процесс, имеющий целью направить
развитие какого-либо объекта или метода к лучшему состоянию.
https://ru.wikipedia.org/wiki/Оптимизация

Что такое «наилучшее состояние» для молекулы с точки зрения вычислительной химии?
Наиболее соответствующее наблюдаемому в реальном мире.

Для изолированной молекулы— геометрия, соответствующая минимуму энергии.

По какой-то причине, в отсутствии внешних воздействий система в природе стремится к минимуму энергии.
Точнее, всё немного сложнее, потому что не бывает изолированныхмолекул (даже в космическом вакууме есть
микроволновое излучние), необходимо учитывать температуру, природа стремится к максимуму энтропии /
минимуму другой функции в зависимости от типа рассматриваемой системы и т. д.).

https://ru.wikipedia.org/wiki/Квантовая_химия


Этапы моделирования

3. Расчёт энергии

Оптимизация на ППЭ
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Красный — неоптимизированная геометрия (произвольная точка ППЭ);
синий — оптимизированная геометрия (локальный минимум).

Оптимизация геометрии — поиск минимумов особых точек ППЭ (но чаще минимумов).
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3. Расчёт энергии
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Этапы моделирования

3. Расчёт энергии

Релаксация геометрии: пружинки

Модель «атомов на пружинках» позволяет легко объяснить оптимизацию геометрии с точки зрения физики
реальных предметов:

C C
H

H

H

H

(U)

⇒
C C

H

H

H

H

(R)

Переход (U) → (R) — «релаксация» системы;

на (R) пружинки не обязательно ненатянуты!

Важно, что система (R) в равновесии: равнодействующая сил на каждом атоме = 0.



Этапы моделирования

3. Расчёт энергии

Релаксация геометрии: пружинки

Модель «атомов на пружинках» позволяет легко объяснить оптимизацию геометрии с точки зрения физики
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Переход (U) → (R) — «релаксация» системы;
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3. Расчёт энергии

Оптимизация геометрии приводит к локальному минимуму

H2C CH2
H2C

CH2

Нет таких «пружинок», которые перевели бы цис- в транс- форму.
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3. Расчёт энергии

Аналоговые компьютеры

«Атомам на пружинках» намного проще перейти в локальный минимум, чем промоделитовать это на
компьютере: задачи многомерной оптимизации сложные.

Аналоговые компьютеры возвращаются? (Перевод)

The Most Powerful Computers You’ve Never Heard Of (оригинал)

https://www.youtube.com/watch?v=YaL3xBJBYwQ
https://www.youtube.com/watch?v=IgF3OX8nT0w
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4. Вычисление градиента

Куда и насколько смещать атомы для релаксации?

Как понять, что оптимизация геометрии завершена?

Градиент ∇iV — векторная величина,
компоненты — частные производные (энергии по координатам).

∇iV показывает направление возрастания функции.

−∇iV = −
(

∂V

∂xi
,
∂V

∂yi
,
∂V

∂zi

)
= ~Fi

Сила = − градиент

Для движения к минимуму энергии V атомы нужно смещать
в направлении сил (минус градиента).

min

F

0 rr0

V(r)

∇V
rN
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7. Смещение атомов: линейные методы

Направление и величина смещения определяются
значением ∇V и алгоритмом оптимизации.

Линейные методы требуют только знания градиента ∇V
Метод наискорейшего спуска [Steepest descent, SD]:

x = x0 − c∇V(x0)

V(r)

r0

Шаг N

шаг N+5

шаг N+2

rNr

шаг N+1

шаг N+4

rN+2rN+4

шаг N+3

хорошо работает при больших значениях ∇V;
плохо вблизи пологих минимумов.

метод сопряженных градиентов [conjugate gradient, CG] — требует
запоминания значений градиента для нескольких точек. Сходится
намного быстрее SD.
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7. Смещение атомов: линейные методы

Методо сопряженных градиентов* (слайд со звездочкой)

Смещение:

xk+1 = xk + ck pk

Направление и фактор смещения:

pk = −∇f(xk) + βk pk−1

Коррекция для градиента с учетом предыдущего (2 варианта):

β
FR
k =

∇f(xk) · ∇f(xk)
∇f(xk−1) · ∇f(xk−1)

β
PR
k =

∇f(xk) ·
(
∇f(xk) − ∇f(xk−1)

)
∇f(xk−1) · ∇f(xk−1)
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7. Смещение атомов

Направление и величина смещения определяются значением ∇V и
алгоритмом оптимизации.

Квадратичные методы требуют знания вторых производных

Метод Ньютона-Рафсона [Newton-Raphson, NR]

x = x0 + V′′−1∇V(x0)

Псевдо-квадратичные методы (quasi-NR), BGFS, RFO и
др. Матрица V′′ или её производные оцениваются по
предыдущим шагам.

В сложных случаях, в начале оптимизации или для поиска локальных
минимумов может быть использован “trust radius” — максимально
допустимая величина смещения x−x0 (фиксированная или зависящая
от других парамтров или числа прошедших циклов оптимизации).
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6. Вычисление 2-x производных

Матрица 2-x производных (матрица Гессе [Hessian matrix]; часто
простор. Гессиан [Hessian]) используется некоторыми алгоритмами
оптимизации для ускорения сходимости.
А также необходима для оптимизации переходного состояния

2-е производные быстро аналитически расчитываются в ММ.

В методах квантовой химии — долго и сложно программировать.

Используется приближённая матрица вторых производных: на 1-м
шаге из силового поля (MM пригодилась!), а дальше обновляется
с учётом смещений атомов и градиента выполненного шага. Даёт
хорошую сходимость при оптимизации.

Численное вычисление 2-х производных (мин. 3N вычислений
градиента!) обычно не используется при оптимизации геометрии.
Но может быть использована в особо сложных случаях
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5. Проверка сходимости

Критерии сходимости

Куда и насколько смещать атомы для релаксации?

Как понять, что оптимизация геометрии завершена?

Используются критерии сходимости: численные величины, позволяющие понять, что достигнут минимум
(или другая критическая точка):

Изменение энергии по сравнению с предыдущим шагом: плохой и
ненадёжный критерий.

V(r)

r0

Шаг N

Шаг N+2
ΔV ≈ 0

Шаг N+1
ΔV ≫ 0

rNrN+1rN+2

Максимальные и среднеквадратичные значения градиента / сил на атомах.

Максимальная и среднеквадратичная величина смещения.

Число циклов оптимизации
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5. Проверка сходимости

Примеры предельных значений в различных программах:

obminimize (openbabel/Avogadro):
по энергии 1 × 10−7 «единиц» или 2500 шагов

(из кода: ккал/моль или кДж/моль, зависит от силового поля + внутреннее
ограничение на градиент в 1 × 10−2

Gaussian
Критерий “Loose” Обычный “Tight” “VeryTight”
Maximum Force 0.002500 0.000450 0.000015 0.000002
RMS Force 0.001667 0.000300 0.000010 0.000001
Maximum Displacement 0.010000 0.001800 0.000060 0.000006
RMS Displacement 0.006667 0.001200 0.000040 0.000004

Orca
Критерий “Loose” Обычный “VeryTight”
Energy change 0.000005
RMS gradient 0.000100
MAX gradient 0.000300
RMS step 0.002000
MAX step 0.004000

5. Проверка сходимости

1. Силовое поле

2a. Координаты атомов
(2b. Молекулярный граф)

3. Расчёт энергии

6. Вычисление 2-х производных

4. Вычисление градиента

7. Смещение атомов

Оптимизация геометрии
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5. Проверка сходимости

Примеры

    ----------------------|Geometry convergence|-------------------------
    Item               value                   Tolerance       Converged
    ---------------------------------------------------------------------
    Energy change      -0.0000071240            0.0000050000      NO    
    RMS gradient        0.0000817698            0.0001000000      YES   
    MAX gradient        0.0002887703            0.0003000000      YES   
    RMS step           0.0007282607            0.0020000000      YES   
    MAX step           0.0021850833            0.0040000000      YES   
    ........................................................
    Max(Bonds)      0.0003      Max(Angles)    0.07  
    Max(Dihed)        0.13      Max(Improp)    0.00  
    ---------------------------------------------------------------------

 Everything but the energy has converged. However, the energy
 appears to be close enough to convergence to make sure that the
 final evaluation at the new geometry represents the equilibrium energy.
 Convergence will therefore be signaled now

Вывод комплекса программ ORCA

5. Проверка сходимости

1. Силовое поле

2a. Координаты атомов
(2b. Молекулярный граф)

3. Расчёт энергии

6. Вычисление 2-х производных

4. Вычисление градиента

7. Смещение атомов

Оптимизация геометрии



Этапы моделирования

5. Проверка сходимости

Примеры

         Item               Value     Threshold  Converged?
 Maximum Force            0.000000     0.000015     YES
 RMS     Force            0.000000     0.000010     YES
 Maximum Displacement     0.001386     0.000060     NO 
 RMS     Displacement     0.000209     0.000040     NO 
 Predicted change in Energy=-1.507965D-11
 Optimization completed on the basis of negligible forces.
    -- Stationary point found.

Вывод комплекса Gaussian: значения в а. е.

E(r)

r0 rmin rN

Пологая ППЭ: аглоритм «перепрыгивает» минимум

Чем плохо? Возможно наличие мнимых частот. Очень плохо? Нет.

5. Проверка сходимости
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2a. Координаты атомов
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3. Расчёт энергии
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4. Вычисление градиента
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5. Проверка сходимости

Частичная минимизация и сканирование ППЭ

–
-----------------------------------------------------------------

Redundant Internal Coordinates

-----------------------------------------------------------------
Definition Initial Value Approx d2E/dq

-----------------------------------------------------------------
1. B(C 1,C 0) 1.4925 0.428755
2. B(C 2,C 1) 1.2828 0.926461
3. B(N 3,C 2) 1.3621 0.619958
4. B(C 4,N 3) 1.3678 0.607100
5. B(O 5,C 4) 1.2468 0.946935
6. B(N 6,C 4) 1.3648 0.613933
7. B(C 7,C 1) 1.4880 0.435837
8. B(C 7,N 6) 1.3673 0.608303
9. B(O 8,C 7) 1.3913 0.556938
10. B(H 9,C 0) 1.0952 0.353304
11. B(H 10,C 0) 1.0948 0.353777
12. B(H 11,C 0) 1.0949 0.353705
13. B(H 12,C 2) 1.1777 0.260933
14. B(H 13,N 3) 1.0140 0.426428
15. B(H 14,N 6) 1.0072 0.437160
16. A(H 10,C 0,H 11) 108.5690 0.289218
17. A(C 1,C 0,H 10) 110.6201 0.330801
18. A(C 1,C 0,H 9) 111.7139 0.330727
19. A(H 9,C 0,H 10) 107.6527 0.289167
20. A(H 9,C 0,H 11) 107.7016 0.289157
21. A(C 1,C 0,H 11) 110.4583 0.330789
22. A(C 0,C 1,C 7) 117.5873 0.382091
23. A(C 0,C 1,C 2) 126.4717 0.436639
24. A(C 2,C 1,C 7) 115.9205 0.437930
25. A(C 1,C 2,N 3) 126.1792 0.463790

Вывод программы orca для молекулы тимина
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Тестируем ММ

CH3

NH

O

HN

O

1
2

3

4

5

6

7

8

9

Тимин

Программа: obminimize (http://openbabel.org)

http://openbabel.org
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Тестируем ММ

CH3

NH

O

HN

O

1
2

3

4

5

6

7

8

9

Связь ГЭД+МВ∗ X-RAY∗∗ MP2(full)/cc-pVQZ∗ PBE0-D3/def2-TZVPP
∆(%) ∆(%) ∆(%)

N1-C2 1.377(3) 1.353 −1.7 1.374 −0.2 1.377 0.0
C2-N3 1.378(3) 1.364 −1.0 1.374 −0.3 1.374 −0.3
N3-C4 1.395(3) 1.389 −0.4 1.392 −0.2 1.393 −0.1
C4-C5 1.466(9) 1.456 −0.7 1.452 −0.9 1.459 −0.5
C5=C6 1.344(16) 1.348 0.3 1.345 0.1 1.343 −0.1
N1-C6 1.372(3) 1.377 0.4 1.369 −0.2 1.369 −0.2
C2=O7 1.210(1) 1.238 2.3 1.212 0.1 1.209 −0.1
C4=O8 1.215(1) 1.226 0.9 1.217 0.1 1.212 −0.3
C5-C9 1.487(8) 1.496 0.6 1.486 −0.1 1.488 0.1
среднее абс. 0.9 0.3 0.2

Связь ГЭД+МВ MMFF94 GAFF UFF
∆(%) ∆(%) ∆(%)

N1-C2 1.377(3) 1.368 −0.7 1.352 −1.8 1.372 −0.4
C2-N3 1.378(3) 1.365 −0.9 1.351 −2.0 1.371 −0.5
N3-C4 1.395(3) 1.367 −2.0 1.351 −3.2 1.373 −1.6
C4-C5 1.466(9) 1.488 1.5 1.476 0.7 1.404 −4.2
C5=C6 1.344(16) 1.339 −0.4 1.38 2.7 1.401 4.2
N1-C6 1.372(3) 1.366 −0.4 1.389 1.2 1.401 2.1
C2=O7 1.210(1) 1.226 1.3 1.212 0.2 1.219 0.7
C4=O8 1.215(1) 1.226 0.9 1.215 0.0 1.22 0.4
C5-C9 1.487(8) 1.492 0.3 1.505 1.2 1.504 1.1
среднее абс. 0.9 1.4 1.7

∗ N. Vogt et al., J. Phys. Chem. A, 2008, 112, 7662–7670
∗∗ D. Braun et al., Cryst. Growth Des, 2016, 16, 6, 3480-3496
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7. Расчёт частот колебаний

Частоты колебаний

Зачем?

Для установления типа точки на ППЭ (минимум, переходное состояние)

Расчёт спектров ИК или КР, сравнение с экспериментом

Расчёт энегии нулевых колебаний (ZPE)

Расчёт термодинамических свойств (S,H,G)

Какие?

Гармонические

С учётом ангармонизма
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Квантовый гармонический осциллятор

E = hν
(
n +

1

2

)
= h̄ω

(
n +

1

2

)
E(r)

0 rr0

E0

E1

D0

Молекула HCl: гармоническое приближение и ангармонизм

E0 — Энергия нулевых колебаний [“Zero-point energy”, ZPE]
D0 — Энергия диссоциации
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7. Расчёт частот колебаний

Матрица вторых производных

Частоты колебаний можно вычислить, зная геометрию и 2-е производные энергии по всем
координатам (т.е. матрицу Гессе) V′′.

V
′′

=



∂
2V

∂r21

∂
2V

∂r1∂r2
. . . ∂

2V
∂r1∂rn

∂
2V

∂r2∂r1
∂
2V

∂r22
. . . ∂

2V
∂r2∂rn

. . . . . . . . . . . .

. . . . . . . . . ∂
2V

∂r2n


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7. Расчёт частот колебаний

Нормальные моды и частоты колебаний

Нормальные моды — коллективные движения атомов молекулы при возбуждении фотоном
определённой частоты.

Нормальным модам соответствуют частоты колебаний.

Обычно вычисления проводятся в декартовых координатах, матрица V
′′
размерностью 3N ×

3N разбивается на блоки 3 × 3, соответствующие коорданатам xi, yi и zi соответствующих
атомов.

V
′′

=



∂
2V

∂x21

∂
2V

∂x11∂y11

∂
2V

∂x11∂z11

∂
2V

∂x11∂x12
. . .

∂
2V

∂x11∂y11

∂
2V

∂y21

∂
2V

∂y11∂z11

∂
2V

∂y11∂x12
. . .

∂
2V

∂x11∂z11

∂
2V

∂y11∂z11

∂
2V

∂z21

∂
2V

∂z11∂x12
. . .

∂
2V

∂x12∂x11

∂
2V

∂x12∂y11

∂
2V

∂x12∂z11

∂
2V

∂x22
. . .

. . . . . . . . . . . . . . .


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Масс-взешенные координаты

Система масс-взвешенных координат:
x1 =

√m1∆x1,
y1 =

√m1∆y1,
z1 =

√m1∆z1,
x2 =

√m2∆x2 и т.д.
В такой системе координат

F = M− 1
2 V

′′
M− 1

2

M− 1
2 =



1√m1
0 0 0 . . .

0 1√m1
0 0 . . .

0 0 1√m1
0 . . .

0 0 0 1√m2
. . .

. . . . . . . . . . . . . . .


По правилам умножения матриц получается fij = v

′′
ij /(

√mi
√mj)
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От матрицы 2-х производных к частотам и нормальным координатам

F = M− 1
2 V

′′
M− 1

2

Собственные значения матрицы F связаны с частотами колебаний, а собственные вектора —
направления и амплитуды смещений атомов.

Решение векового уравнения
|F− λI| = 0

обычно находят диагонализацией матрицы.

Частоты ν связаны с собственными значениями λ как

νi =

√
λi

2π

Собственные значения λ могут быть

Положительными: обычное колебание

Нулевыми: трансляция и/или либрация

Отрицательными: в переходном состоянии или седловой точке более высокого порядка
(напр. ν = 50 i см−1; в программах часто записывается как −50 cm−1)[

E = hν
(
n +

1

2

)]
⇒ EZPE =

1

2
h

N∑
i=0

νi
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Классификация точек ППЭ по количеству мнимых частот

В зависимости от числа мнимых частот особые точки ППЭ:

0: минимум

1: седловая точка (переходное состояние);

> 1: что-то странное и неинтересное.

Особая точка подразумевает ∇V(r) = 0!

А если нет: ∇V(r) 6= 0?

Оппимизация не закончена: малое число циклов, пологая ППЭ, …;

По одной и более координатам rx минимум не достигнут, поэтому ∂
2V

∂r2x
< 0;

Именно из-за этого обычно наблюдаются мнимие частоты.
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Классификация точек ППЭ по количеству мнимых частот

В зависимости от числа мнимых частот особые точки ППЭ:

0: минимум

1: седловая точка (переходное состояние);

> 1: что-то странное и неинтересное.

Особая точка подразумевает ∇V(r) = 0!

А если нет: ∇V(r) 6= 0?

Оппимизация не закончена: малое число циклов, пологая ППЭ, …;

По одной и более координатам rx минимум не достигнут, поэтому ∂
2V

∂r2x
< 0;

Именно из-за этого обычно наблюдаются мнимие частоты.
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Двухатомная молекула: пример расчёта частот

Для двухатомной молекулы (с квадратичным потенциалом, гармонического осциллятора):

0 xx1 x2

r

Поскольку r = x2 − x1

V(r) =
1

2
k(r − r0)

2 ⇒ V(x1, x2) =
1

2
k(x2 − x1 − r0)

2

∂
2V(x1, x2)
∂x21

=
∂
2V(x1, x2)
∂x22

= k

∂
2V(x1, x2)
∂x1∂x2

=
∂
2V(x1, x2)
∂x2∂x1

= −k
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Двухатомная молекула

V
′′

=

(
k −k
−k k

)

F = M−1/2V
′′
M−1/2

=

 k
m1

− k√m1m2
− k√m1m2

k
m2



|F− λI| =

∣∣∣∣∣∣
k

m1
− λ − k√m1m2

− k√m1m2
k

m2
− λ

∣∣∣∣∣∣ = 0

(
k
m1

− λ

)(
k
m2

− λ

)
−

k2

m1m2

= λ
2 − λk

(
1

m 1
+

1

m 2

)
+

k2

m1m2

−
k2

m1m2

= 0

λ
2 − λk

1

µ
= 0

µ =
m1m2
m1+m2

— приведённая масса
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Двухатомная молекула

λ
2 − λk

1

µ
= 0

λ1 = 0 ⇒ ν1 = 0 : соответствует трансляции молекулы как целого

λ2 = k
µ ⇒ ν2 =

[√
λ

2π

]
= 1

2π

√
k
µ
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Учёт ангармонизма

V(r) = D0

(
1 − e−a(r−r0)

)2

a =

√
k

2D0

ν =
1

2π

√
k
µ

⇒
√
k = 2πν

√
µ

a = 2πν

√
µ

2D0

E = hν
(
n +

1

2

)
−

h2ν2

4D0

(
n +

1

2

)2

E(r)

0 rr0

E0

E1

D0

HCl

Правила отбора для ИК-спектров в гармоническом приближении: ∆n = ±1

Правила отбора для ИК-спектров в ангармоническом приближении: ∆n — любой
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Расчёт интенсивностей ИК спектров

Правила отбора для ИК-спектров: ∆µ 6= 0

Интенсивность I пропорциональна квадрату дипольного момента перехода:

I ∝
∣∣∣〈ψfinal| µ̂ |ψinitial〉

∣∣∣2
В ММ поглощение (интегральная интенсивность) описывается классически через

Ai =
1

nl

∫
bandi

ln(I0/I) dv = C

(
∂µ

∂Qi

)2

Qi — нормальные координаты колебания с частотой νi, n — концентрация, l — длина ячейки

(C = NAπgi/3c
2 , gi — степень вырождения колебания, c— скорость света, NA —постоянная Авогадро)

µ =
N∑

i=0

qiri
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Колебания по нормальным координатам мнимой частоты — в направлении минимума.
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1. Метод расчёта

2a. Координаты атомов
(2b. Молекулярный граф)

3. Вычисление энергии

4. Вычисление градиента

5. Проверка сходимости

6. Вычисление 2-х производных
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Вычисление 2-х производных
Расчёт частот колебаний

Расчёт других свойств

Стоп

Оптимизация геометрии
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