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Обоснование механистического описания молекул

В этой лекции:

Молекулярная механика — механистическое описание молекул (атомы на пружинках)

Общее понятие о молекулярной механике, обоснование и области применения
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Потенциалы для описания валентных взаимодействий
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Обоснование механистического описания молекул

Квантовохимическое описание молекулы

Часто в вычислительной химии необходимо знать энергию в
определённых точках ППЭ:
минимума, седловой точки, вдоль какого-то сечения и т. д.

E

(Полная) энергия E может быть вычислена из уравнения Шрёдингера:

C1

H1

H2

C2

H3

H4

ĤΨ(R, r) = EΨ(R, r)

Ψ = Ψ(RC1,RC2,RH1,RH2,RH3,RH4, r1, r2, ..., r16)

Это уравнение можно (приближённо) решить, но всегда ли это необходимо?



Обоснование механистического описания молекул

Энергия как простая функция координат

Часто в вычислительной химии интересна энергия в определённых точках
ППЭ
минимума, максимума, вдоль какого-то сечения и т. д.

E

Хотелось бы иметь как можно более простую зависимость энергии от координат!

E ≡ V = V(R1,R2, . . . ,RN)

V — потенциальная энергия;

{Ri} — координаты. Какие координаты удобнее? Избыточные внутренние.



Обоснование механистического описания молекул

«Атомы на пружинках»
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Почему так вообще можно?

1. Приближение Борна-Оппенгеймера!



Обоснование механистического описания молекул

«Атомы на пружинках»
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Обоснование механистического описания молекул

Интересны молекулы, а не набор атомов

1. Приближение Борна-Оппенгеймера!

2. Интерес представляют конформации, не очень удалённые от минимумов ППЭ!



Обоснование механистического описания молекул

Если ничего не знать

Потенциальную энергию молекулы можно разложить в ряд Тейлора:

V(r) = V(r0) +
dV
dr

dr +
1

2!

d
2V

dr2
dr2 +

1

3!

d
3V

dr3
dr3 + . . .

Вблизи минимума:

V(r)
∣∣∣
r=r0

= V(r0) + dV
dr dr +
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Обоснование механистического описания молекул
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Потенциалы для описания валентных взаимодействий

Гармоническое приближение

Обрываем ряд на квадратичном выражении:

V(r) = V(r0) + dV
dr dr +

1

2!

d
2V

dr2
dr2+

1

3!
d

3V
dr3

dr3 + . . .

V(r) =
1

2
k
(
r− r0

)2

V(r) — потенциальная энергия

k — силовая постоянная

r — расстояние

r0 — равновесное расстояние



Потенциалы для описания валентных взаимодействий
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Потенциалы для описания валентных взаимодействий
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Потенциалы для описания валентных взаимодействий

Закон Гука

V(r) =
1

2
k
(
r− r0

)2
F = −

dV(r)
dr

= −k(r− r0)

0 r

r0

Закон Гука



Потенциалы для описания валентных взаимодействий

Гармоническое приближение
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Потенциалы для описания валентных взаимодействий

Молекула H2: «точный» и гармонический потенциалы
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«Точные» значения из: G.C. Lee and E. Clementi, J. Chem. Phys., 1974, 60, 1275, 10.1063/1.1681192

(зкспериментальные спектроскопические данные + потенциал Галбурта—Хиршфельдера)

https://doi.org/10.1063/1.1681192


Потенциалы для описания валентных взаимодействий

Молекула H2: смещённый гармонический потециал
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение до 3-го порядка

Можно ли улучшить потенциал? Конечно!
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение до 3-го порядка при больших r

Можно ли улучшить потенциал? Конечно! Но есть проблема...
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение с производными 2-го и 4-го порядка

Может лучше взять следующий чётный член?
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Потенциалы для описания валентных взаимодействий

Молекула H2: разложение с производными 2-го и 4-го порядка, большой масштаб

Может лучше взять следующий чётный член?
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Потенциалы для описания валентных взаимодействий

Разложение до производных 4-го порядка, альтернативные выражения

V(r) =
1

2
k
(
r− r0

)2
+

1

6
k3 (r− r0

)3
+

1

24
k4 (r− r0

)4

≡

V(r) =
1

2

[
k + k(3)

(
r− r0

)
+ k(4)

(
r− r0

)2] (r− r0
)2

Альтернативная форма записи разложения до производной 4-го порядка, потребуется далее.

Коэффициенты k(3) и k(4) включают в себя множители 1
3 и 1

12 .



Потенциалы для описания валентных взаимодействий

Молекула H2: потенциал Морзе

Потенциал Морзе

V(r) = De

(
1− e−a(r−r0)

)2

De — глубина потенциальной ямы
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√
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Потенциалы для описания валентных взаимодействий

Разложение функции Морзе

V(r) = De

(
1− e−a(r−r0)

)2

Разложение в ряд экспоненты (до 3 степени):

V(r) = De[1− [1− a(r− r0) +
1

2
a2

(r− r0)
2 −

1

6
a3

(r− r0)
3
)]]

V(r) = De

[
a2 − a3

(r− r0) +
7

12
a4

(r− r0)
2
]

(r− r0)
2

V(r) =
1
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Потенциалы для описания валентных взаимодействий

Зависимость константы от прочности связни

Где чья константа ki?

V(r) =
1

2
k
(
r− r0

)2

0

5

10

15

20

25

30

−0.2 −0.1 0 0.1 0.2

V,
кк
ал
/
м
ол
ь

r, Å
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Потенциалы для описания валентных взаимодействий

Зависимость константы от прочности связни
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Потенциалы для описания валентных взаимодействий

Силовые константы для связей C− C

Где чья константа ki?
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Потенциалы для описания валентных взаимодействий

Выражение для общей потенциальное энергии

Начнём записывать общее выражение для потенциальной энергии системы:

V = Vb + . . .

Vb =
1

2

Nb∑
i=1

kb,i(r− r0,i)
2



Потенциалы для описания валентных взаимодействий

Потенциалы для углов

Всё так же!

V(α) = V(0) + dV
dα

dα+
1

2!

d
2V

dα
2

dα
2

+
1

3!

d
3V

dα
3

dα
3

+ · · · ⇒

V(α) =
1

2
ka(α− α0)

2

α0 α0



Потенциалы для описания валентных взаимодействий

Силовые константы для углов



Потенциалы для описания валентных взаимодействий

Выражение для общей потенциальное энергии

Продолжаем записывать общее выражение для потенциальной энергии системы:

V = Vb + Va + . . .

Vb =
1

2

Nb∑
i=1

kb,i(r− r0,i)
2

Va =
1

2

Na∑
j=1

ka,j(α− α0,j)
2



Потенциалы для описания валентных взаимодействий

Перекрестные члены

V(r1, r2) = V(0) + ∂V
∂r1

dr1 + ∂V
∂r2

dr2 +
1

2

∂
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∂r21
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1

2

∂
2V

∂r22
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2

∂
2V

∂r1∂r2
dr1 dr2 + . . .



Потенциалы для описания валентных взаимодействий

Перекрестные члены
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Потенциалы для описания торсионных углов

Торсионный гармонический потенциал

Снова разложение в ряд. Почему нет?
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Потенциалы для описания торсионных углов

Торсионный гармонический потенциал
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Потенциалы для описания торсионных углов

Торсионные потенциалы

Тогда надо разложить в ряд, подходящий для периодических функций!

V(ϕ) =
∞∑
j=0

kj[cos j(ϕ− ϕ0)]

Ряд Фурье!

Где его оборвать?

V(ϕ) =
1

2
kt1[1 + cos

(
ϕ− ϕ0

)
] +

1

2
kt2[1− cos 2(ϕ− ϕ0)] +

1

2
kt3[1 + cos 3(ϕ− ϕ0)]
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Торсионные потенциалы
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Потенциалы для описания торсионных углов

Энергия вращения в бутане
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Потенциалы для описания торсионных углов

Выражение для общей потенциальной энергии

Продолжаем записывать общее выражение для потенциальной энергии системы:

V = Vb + Va + Vt + . . .

Vb =
1

2

Nb∑
i=1

kb,i(r− r0,i)
2

Va =
1

2

Na∑
j=1

ka,j(α− α0,j)
2

Vt =

Nt∑
l=1

(
1

2
kt1,l[1 + cos

(
ϕ− ϕ0

)
] +

1

2
kt2,l[1− cos 2(ϕ− ϕ0)] +

1

2
kt3,l[1 + cos 3(ϕ− ϕ0)]

)



Потенциалы для описания торсионных углов

Валентные и невалентные взаимодействия

V = Vb + Va + (Vab) + Vt + (Vit) + . . .︸ ︷︷ ︸
Валентные взаимодействия

+ VvdW + Vel + . . .︸ ︷︷ ︸
Невалентные взаимодействия

Для 1,2- и 1,3- атомов энергия невалентных взаимодействий не рассчитывается
(уже включена в валентные);

Для 1,5- и дальше — рассчитывается всегда;

Для 1,4- энергия:

рассчитывается стандатрным образом (чаще всего);
шкалирутся на определённую величину (0 < x < 1);
не рассчитывается (редко).
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Ван-дер-Ваальсовы взаимодействия

Диполь и дипольный момент

δ+1
r

δ−2

Электрический диполь

~µ =~r1δ1 +~r2δ2

Чаще всего дипольный момент рассматривают для систем с |δ+1 | = |δ
−
2 |

т. е. тех, у которых монопольный момент – общий задяд – равен 0



Ван-дер-Ваальсовы взаимодействия

Диполи из многих зарядов

На каких рисунках µ 6= 0?

δ/2− δ+ δ/2−

D∞h

δ/2+

δ−

δ/2+

C2v

δ+

δ/4−

δ/4− δ/4−

δ/4−

Td

µ = 0, если в системе присутствует i, и/или больше одной оси Cn



Ван-дер-Ваальсовы взаимодействия

Диполи из многих зарядов

На каких рисунках µ 6= 0?

δ/2− δ+ δ/2−

D∞h

δ/2+

δ−

δ/2+
μ

C2v

δ+

δ/4−

δ/4− δ/4−

δ/4−

Td

µ = 0, если в системе присутствует i, и/или больше одной оси Cn



Ван-дер-Ваальсовы взаимодействия

Диполи из многих зарядов

На каких рисунках µ 6= 0?

δ/2− δ+ δ/2−

D∞h

δ/2+

δ−

δ/2+
μ

C2v

δ+

δ/4−

δ/4− δ/4−

δ/4−

Td

µ = 0, если в системе присутствует i, и/или больше одной оси Cn



Ван-дер-Ваальсовы взаимодействия

Диполь-дипольные взаимодействия

На каких рисунках взаимодействие выгодное (притяжение)?

δ+

δ− δ+

δ−

a:

притяжение

δ+

δ−

δ+

δ−

b:

отталкивание

δ+ δ− δ+ δ−

c:

притяжение

δ+ δ− δ+δ−

d:

отталкивание



Ван-дер-Ваальсовы взаимодействия

Диполь-дипольные взаимодействия

На каких рисунках взаимодействие выгодное (притяжение)?

δ+

δ− δ+

δ−

a: притяжение

δ+

δ−

δ+

δ−

b: отталкивание

δ+ δ− δ+ δ−

c: притяжение

δ+ δ− δ+δ−

d: отталкивание



Ван-дер-Ваальсовы взаимодействия

Диполь-дипольные взаимодействия

δ2
+

δ1
−

δ3
−

δ4
+

θ1

θ2

φ
r

A

B

C

D

Vdd = −
2

4πε0

µ1µ2

r3
(cos θ1 cos θ2 −

1

2
sin θ1 sin θ2 cosϕ)



Ван-дер-Ваальсовы взаимодействия

Наведённый диполь

µ = 0



Ван-дер-Ваальсовы взаимодействия

Наведённый диполь

µ = 0



Ван-дер-Ваальсовы взаимодействия

Наведённый диполь

µ 6= 0



Ван-дер-Ваальсовы взаимодействия

Взаимодействие мнгновенного и наведённого диполей

t = 0

V ∝
1

r6



Ван-дер-Ваальсовы взаимодействия

Взаимодействие мнгновенного и наведённого диполей

t = 0 + δt

V ∝
1

r6



Ван-дер-Ваальсовы взаимодействия

Взаимодействие мнгновенного и наведённого диполей

t = 0 + δt

V ∝
1

r6



Ван-дер-Ваальсовы взаимодействия

Потенциал Леннарда-Джонса

VLJ = ε

[(
r0

r

)12

− 2
(

r0

r

)6
]

= 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

σ =
r0
6√2
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Ван-дер-Ваальсовы взаимодействия

Потенциал Букингема

V6−exp = Ae−Br −
C

r6

VB = ε

[
e−r/r0 −

( r0
r

)6
]
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Ван-дер-Ваальсовы взаимодействия

Потенциал Букингема

VB = ε

[
e−r/r0 −

( r0
r

)6
]
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полный потенциал

притяжение

отталкивание

r0



Ван-дер-Ваальсовы взаимодействия

Расчёт дисперсионных взаимодействий для пар атомов

VLJ = ε

[(
r0

r

)12

− 2
(

r0

r

)6
]

Параметры в силовых полях: r0, ε:

Тип атома R0, Å ε, ккал/моль σ, Å 2rvdW, Å
H (неполярный) 2.64 0.022 2.35 2.40
С (алькильный) 3.70 0.200 3.30 3.40
С (ароматический) 3.98 0.070 3.55 3.40
S (тиольный) 4.30 0.585 3.83 3.60

R0(AB) =
R0(A) + R0(B)

2
: R0(HnpCar) =

2.64 + 3.98

2
= 3.31

ε(AB) =
√
ε(A)ε(B) : ε(HnpSth) =

√
0.022 · 0.585 = 0.113



Ван-дер-Ваальсовы взаимодействия

Энергия вращения в бутане
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Ван-дер-Ваальсовы взаимодействия

Расчёт дисперсионных взаимодействий для модельной системы



Электростатические взаимодействия

Электростатические взаимодействия

V = Vb + Va + (Vab) + Vt + (Vit) + . . .︸ ︷︷ ︸
Валентные взаимодействия

+ VvdW + Vel + . . .︸ ︷︷ ︸
Невалентные взаимодействия

Закон Кулона:

Vel =
1

4πε0

q1q2

r12



Электростатические взаимодействия

Электростатические взаимодействия электронных плотностей

Vel =
1

4πε0

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1 dr2



Электростатические взаимодействия

Электростатические взаимодействия точечных зарядов

Vel =
1

4πε0

1

2

N∑
i=1

N∑
j 6=i

qiqj

rij
=

1

4πε0

N∑
i=1

N∑
j=i+1

qiqj

rij



Электростатические взаимодействия

Частичные заряды

Откуда брать частинчые заряды на атомах?

Из данных квантовой химии

Параметризовать по наблюдаемым свойствам



Электростатические взаимодействия

Простейшая модель молекулы воды

O

H H
+0.41

−0.82

+0.41

1.0 Å

109.47°

1.0 Å

модель SPC (Simple Point Charge)

O

H H104.5°

0.96 Å 0.96 Å

Экспериментальные данные



Электростатические взаимодействия

Модели молекулы воды с разным числом частичных зарядов

O

H H
3-точечная

O

H H
M

4-точечная 6-точечная

O

H H
M

LL

5-точечная

O

H H

LL

Table: Модели молекулы воды семейства TIPnP

TIP3P TIP4P TIP5P
r(OH),Å 0.9572 0.9572 0.9572
r(OM),Å 0.15
r(OL),Å 0.70
HOH,◦ 104.52 104.52 104.52
HOL,◦ 109.47
q(H) 0.417 0.52 0.241
q(O) -0.834
q(M) -1.04
q(L) -0.241



Электростатические взаимодействия

Поляризуемые силовые поля

Модель точечных зарядов не учитывает поляризуемость молекул
т. е. изменени электронной плотности под влиянием окружения

0. Aδ+; δ+ = const
обычное (неполяризумое) силовое поле;

1. Aδ+; δ+ 6= const
флуктуирующие заряды [fluctuating charges]:
Величины зарядов уравновешивается в процессе расчёта
например, заряду приписывается фиктивная масса и величина заряда таким образом «двигается»;

2. Aδ1+···δ2+:
осцилляторы Друде [Drude oscillators], «заряды на пружинках»
Заряд делится надвое, и второй как-бы на пружинке.
т. е. описывается потенциалом, определяющим атомную поляризуемость

α = q2
D/kD.

3. A→ (мультипольное разложение)
постоянныое (анизотропное) распределение ρ(r): мультипольное разложение,
изменяемый поляризуемый вклад: наводимй диполь µ,
Величина µ зависит от электростатического поля в точке.



Электростатические взаимодействия

Метод Эвальда

Заряды в периодической 1D ячейке:

0 L 2L

V =
1

2

∞∑
n

′ N∑
i

N∑
j

qiqj

rij + nL

(i 6= j|n = 0)

ρi(r) = qiδ(r− ri)



Электростатические взаимодействия

Метод Эвальда

0 L 2L

(a)

(b)

(c)

ρi(r) = qiδ(r− ri)

ρi(r) = −qi

η
2

π

 3
2

e−η
2
(r−ri)

2



Электростатические взаимодействия

Метод Эвальда

(b)

(c)

V =
1

2

N∑
i=1

N∑
j=1

∑
n

′ qiqj

|rij + n| erfc(κ|rij + n|) +
1

πL3

∑
k6=0

qiqj

(
2π

k

)2

e−k2/4κ
2

cos
(
k · rij

)−
− κ√

π
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q2
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2π
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Электростатические взаимодействия

Примеры описания силовых полей (1)

##############################
## ##
## Force Field Definition ##
## ##
##############################

forcefield MM2-1991

bondunit 71.94
bond-cubic -2.0
bond-quartic 1.25 !! not in original MM2
angleunit 0.02191418
angle-sextic 0.00000007
strbndunit 2.51118
opbendtype ALLINGER
opbendunit 0.02191418
opbend-sextic 0.00000007
torsionunit 0.5
vdwtype BUCKINGHAM
radiusrule ARITHMETIC
radiustype R-MIN
radiussize RADIUS
epsilonrule GEOMETRIC
a-expterm 290000.0
b-expterm 12.5
c-expterm 2.25
vdw-14-scale 1.0
chg-14-scale 1.0
electric 332.0538
dielectric 1.5

V = ε

Ae
−B

(
r
r0

)
− C

( r0
r

)6



εXY =
√
εXεY



Электростатические взаимодействия

Примеры описания силовых полей (2)

#############################
## ##
## Atom Type Definitions ##
## ##
#############################

atom 1 C "CSP3 ALKANE" 6 12.000 4
atom 2 C "CSP2 ALKENE" 6 12.000 3
atom 3 C "CSP2 CARBONYL" 6 12.000 3
atom 4 C "CSP ALKYNE, C=C=O" 6 12.000 2
atom 5 H "NONPOLAR HYDROGEN" 1 1.008 1
atom 6 O "-O- ALCOHOL, ETHER" 8 15.995 4
atom 7 O "=O CARBONYL" 8 15.995 1
atom 8 N "NSP3" 7 14.003 4
atom 9 N "NSP2 AMIDE" 7 14.003 3
atom 10 N "NSP" 7 14.003 1

################################
## ##
## Van der Waals Parameters ##
## ##
################################

vdw 1 1.9000 0.0440
vdw 2 1.9400 0.0440
vdw 3 1.9400 0.0440
vdw 4 1.9400 0.0440
vdw 5 1.5000 0.0470 0.915
vdw 6 1.7400 0.0500
vdw 7 1.7400 0.0660
vdw 8 1.8200 0.0550
vdw 9 1.8200 0.0550
vdw 10 1.8200 0.0550



Электростатические взаимодействия

Примеры описания силовых полей (3)

#####################################
## ##
## Van der Waals Pair Parameters ##
## ##
#####################################

vdwpair 1 5 3.3400 0.0460
vdwpair 1 36 3.3370 0.0460
vdwpair 2 21 2.3400 1.1000
vdwpair 2 23 2.3400 0.4000
vdwpair 2 24 2.3400 1.0000
vdwpair 2 28 2.3400 1.0000
vdwpair 6 21 1.8300 1.3000
vdwpair 6 23 1.8300 0.6000



Электростатические взаимодействия

Примеры описания силовых полей (4)

##################################
## ##
## Bond Stretching Parameters ##
## ##
##################################

bond 1 1 4.400 1.5230
bond 1 2 4.400 1.4970
bond 1 3 4.400 1.5090
bond 1 4 5.200 1.4700
bond 1 5 4.600 1.1130
bond 1 6 5.360 1.4020

################################
## ##
## Angle Bending Parameters ##
## ##
################################

angle 1 1 1 0.450 109.47 109.51 109.50
angle 1 1 2 0.450 109.47 109.51 109.50
angle 1 1 3 0.450 107.80 109.90 110.00
angle 1 1 4 0.450 109.47 112.40 109.00
angle 1 1 5 0.360 109.39 109.41 110.00
angle 1 1 6 0.700 107.50 107.70 107.40
angle 1 1 8 0.570 109.47 108.80 109.50
angle 1 1 9 0.500 109.28 110.78 109.28
angle 1 1 11 0.650 109.50 107.50 109.50
angle 1 1 12 0.560 108.20



Электростатические взаимодействия

Примеры описания силовых полей (5)

########################################
## ##
## Atomic Partial Charge Parameters ##
## ##
########################################

charge 16 1.0000
charge 30 1.0000
charge 39 1.0000
charge 47 -0.5000

#####################################
## ##
## Bond Dipole Moment Parameters ##
## ##
#####################################

dipole 1 2 0.3000 0.500
dipole 1 3 0.3000 0.500
dipole 1 4 0.7500 0.500
dipole 1 6 0.4400 0.500
dipole 1 8 0.0400 0.500
dipole 1 9 1.4700 0.500
dipole 1 11 1.8200 0.500
dipole 1 12 1.9400 0.500

Vdd = −
2

4πε0

µ1µ2

r3
(cos θ1 cos θ2 −

1

2
sin θ1 sin θ2 cosϕ)
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