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Периодические граничные условия

Сколько частиц в реальных экспериментах?

Очень чувствительный метод: флуоресцентная спектроскопия. Существуют приборы

для образцов ≈ [1 мкл]. Пусть раствор в H2O:

1 мкл = 1× 10
−9

м
3
= 1× 10

21
Å

3
или кубик со стороной 1× 10

7
Å

3

(в ≈ 1× 10
6
раз больше типичной ячейки кристалла)

1 мкл H2O весит ≈ 1 мг и содержит 5.56× 10
−5

моль или 3.44× 10
19
молекул

Если образец однородный, тогда взяв достаточный элементарный объём получим

правильное среднее свойство
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Периодические граничные условия

Проблема границ

Почему в большинстве случаев нельзя использовать просто (изолированный) элементарный объём?

На границе и в объёме действуют разная суммарная сила

При достаточной кинетической энергии объект может (частично) испариться

Но: наночастицы и нанокапли
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Периодические граничные условия

Периодические граничные условия: кристалл

Периодические граничные условия [Periodic boundary conditions, PBC]

задают условия для границ элементарного объёма и позволяют моделировать бесконечный объект.

В молекулярном моделировании условия: элементарный объём с любой стороны окружается

собственными образами, т. е. ячейками, в которых положение частиц совпадает с центральной.

Пример физического объекта: идеальный кристалл.

В реальном кристалле: дефекты, колебания, мозаичность, . . .
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Периодические граничные условия

Периодические граничные условия произвольная система

Для произвольных макроскопических систем (жидкостей, газов, поверхностей раздела

фаз и т. д.):

Кубическая решётка

Решётка из параллелепипедов

В любом случае для системы с K частица, «улетающая» из ячейки через одну из

граней «влетает» в ячейку с другой стороны.

Размер ячейки: баланс между масштабом задачи, вычислительной сложностью и

нефизичными корреляциями.
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Периодические граничные условия

Другие многогранники полностью заполняющие пространство

Усечённый октаэдр Ромбододекаэдр

Более изотропны (лучше для жидкостей), расстояния между повторяющимися образами

больше, чем для куба. Но — сложнее программировать!
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Статистическая термодинамика

Фазовое пространство, термодинамические свойства и статсумма

Фазовое пространство, термодинамические свойства и статсумма
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Статистическая термодинамика

Статсумма и фазовое пространство

Состояние системы описывается точкой в фазовом пространстве Γ = {r, p},
где r = {r1, . . . , rN} и p = {p1, . . . , pN} — векторы координат и импульсов всех частиц.
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Статистическая термодинамика

Статистические ансамбли и термодинамические системы

микроканонический ансамбль (NVE) — изолированная система: постоянное

число частиц, нет обмена энергией

канонический ансамбль (NVT) — закрытая система в термическом равновесии

со средой

большой канонический ансамбль (µVT) — открытая система: может обмениваться

тепловой энергией и веществом

изотермо-изобарический ансамбль (NPT) — закрытая система при постоянном

давлении
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Статистическая термодинамика

Любое физическое свойство в классическом приближении может быть вычислено как

〈A〉 =

∫
A(r)e−βH(r,p)

drdp∫
e−βH(r,p)

drdp
(1)

где

β =
1

kbT

H(r, p) = V(r) +K(p)

K(r) =
N∑

i=1

1

2mi

(
p2
xi + p2

yi + p2
zi

)
V(r) = Vb + Va + Vt + (Vit) + Ve + Vvdw + . . .
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Статистическая термодинамика

Важная величина, связывающая микросостояния с термодинамическими величинами — Z статистическая

сумма (для N идентичных частиц):

Z = ZNVT =
1

N!

1

h3N

∫
e−βH(r,p)

dr dp (2)

Вероятность реализации микросостояния с энергией E определяется выражением

PE =
1

Z NVT
e−βE

Свободная энергия Гельмгольца NVT:

F = −kBT ln Z (3)

Для других ансамблей также можно записать

ZNVE = X
∫

e−βδ(H(r,p)−E)
dr dp

и тогда

S = kB ln ZNVE

и т. д.
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Статистическая термодинамика

f(x)

x0
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Два основных подхода к вычислению интегралов по ФП

f(x)

x0

Молекулярная динамика

Использование законов (классической) механики для описания эволюции системы во времени.

Частицы движутся, сталкиваются, ускоряются и замедляются. Вклад точки Γ(r, p) в интеграл
определяется «физичностью» движения частиц.

++ Моделирование динамических свойств, простота понимания, универсальность реализации.

−− Постоянное число частиц, «медленная сходимость».

Монте-Карло

Новая точка Γ(r) выбирается случайным образом. Учитывать или нет Γ(r) при вычислении
интеграла определяется соотношением энергий новой и старой конфигурации.

++ Очень большая гибкость, возможность работы с переменным числом частиц, «более

быстрая сходимость».

−− Отсутствие универсальности, проблема с динамическими свойствами.
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Молекулярная динамика

Молекулярная динамика
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Молекулярная динамика

Среднее по ансамблю ≈ среднему по времени

Как и в реальном мире частицы движутся, сталкиваются, ускоряются и замедляются . . .

Точки в фазовом пространстве зависят от времени:

Γ = Γ(t) = Γ
(
r(t), p(t)

)
Эргодическая гипотеза состоит в том, что

〈A〉ens =

∫
A(r)e−βH(r,p)

dr dp∫
e−βH(r,p)

drdp
=
〈
A(Γ(t))

〉
time = lim

t→∞

1

t

∫ t

0
A(Γ(t)) dt

При равной вероятности состояний система будет проводить в этих состояниях одинаковое

время, и усреднение по состояниям можно заменить усреднением по времени.

Если за бесконечное время система пройдёт все точки фазового пространства, она

является эргодичной.

Но этом вклад в интеграл по времени будут давать только значимые точки Γ, т. к. мы
моделируем реальную эволюцию системы во времени.
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Молекулярная динамика

Движение по траекториям фазового пространства

Движения по траекториям Γ, шестиугольники — точки фазового пространства Γ(r(t), p(t)). Зелёным обозначены

обычные траектории, красным — циклические траектории, чёрным — траектории, проходящие вблизи барьера.

Adapted from M. Allen and D. Tildesley “Computer Simulation of Liquids”, Oxford University Press, 1989
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Молекулярная динамика

Уравнения движения

Пользуемся законами Ньютона!

С одной стороны, для каждой частицы

F(t) = ma(t) = m
dv(t)

dt
= m

d
2r(t)

dt2

с другой,

F = −
dV(r)

dr

md
2r(t)

dt2
= −

dV(r)
dr

mr̈i = −∇iV(r)

ṗi = fi

(4)
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Молекулярная динамика

Интегрирование по времени

lim
t→∞

1

t

∫ t

0
A(Γ(t)) dt ≈

1

N∆t

N∑
n=0

A(Γ(t + n∆t))∆t =
1

N

N∑
n=0

A(Γ(t + n∆t))
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Молекулярная динамика

Интегрирование уравнений движения

Задача: по значениям r(t) и v(t) найти r(t + ∆t) и v(t + ∆t)

Можно просто разложить в ряд:

r(t + ∆t) = r(t) +
dr(t)

dt
∆t +

1

2

d
2r(t)

dt2
∆t2 + . . .

r(t + ∆t) = r(t) + v(t)∆t +
1

2m
f(t)∆t2 + . . .

Если оборвать выражение после квадратичного члена, то получается простейший

алгоритм интегрирования Эйлера — плохой алгоритм (нефизичный: необратимый во

времени и др.), и очень быстро накапливающий численные ошибки.
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Молекулярная динамика

Интегрирование уравнений движения: VERLET

Алгоритм VERLET [фр. Loip Verlet]: снова раскладываем в ряд:

r(t + ∆t) = r(t) +
dr
dt

∆t +
1

2

d
2r

dt2
∆t2 +

1

6

d
3r

dt3
∆t3 +O(∆t4)

и аналогично, но с минусом

r(t−∆t) = r(t)−
dr
dt

∆t +
1

2

d
2r

dt2
∆t2 −

1

6

d
3r

dt3
∆t3 +O(∆t4)

Складывая два разложения

r(t + ∆t) + r(t−∆t) = 2r(t) +
1

2

d
2r

dt2
∆t2 +O(∆t4)

или поскольку

m
d

2r(t)

dt2
= −

dV(r)
dr

≡ F(t)⇒
d

2r(t)

dt2
=

F(t)
m

r(t + ∆t) ≈ 2r(t)− r(t−∆t) +
1

2

F(t)
m

∆t2 (5)

В выражении (5) напрямую не используются скорости! Если они нужны, то вместо сложения

можно вычесть разложения выше, и тогда

v(t) =
r(t + ∆t)− r(t−∆t)

2∆t
+O(∆t2)
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Молекулярная динамика

Интегрирование уравнений движения: LEAPFROG

Алгоритм LEAPFROG [англ. чехарда]:

v
(

t−
∆t
2

)
≡

r(t)− r(t−∆t)
∆t

v
(

t +
∆t
2

)
≡

r(t + ∆t)− r(t)
∆t

r(t + ∆t) = r(t) + ∆tv
(

t +
∆t
2

)
v
(

t +
∆t
2

)
= v

(
t−

∆t
2

)
+ ∆t

f(t)
m

(6)

Необходимо запоминать значения с двух предыдущих шагов (t−∆t и t− ∆t
2 ). При этом значения

r и v рассчитываются в разные моменты времени и как бы «перепрыгивают» друг друга:

t+Δt

t+Δt/2
t

t-Δt/2

r rvv
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Молекулярная динамика

Этапы расчёта методом молекулярной динамики (1)

Элементарная ячейка и число частиц: чем больше, тем лучше:

меньше корреляций;

больше возможности для усреднения;

вычислительная сложность шага для ММ O(N log(N)) или O(N
2
); для

квантовой химии не меньше O(N
3
); от числа шагов — линейная.

Метод описания системы:

классическая ММ;

квантовая химия (HF, DFT): Борн-Оппенгеймер или Кар-Паринелло;

смешанный метод (QM/MM).

Метод и параметры расчёта:

ансамбль, требуемые термодинамические параметры (T, P, E, . . . );

алгоритм интегрирования (VERLET, LEAPFROG и т. д.);

термостат (Nose-Hoover, Berendsen и т. д.);

временной шаг: — порядка 1фс = 1× 10
−15

с. Задаётся не меньше

времени элементарного процесса: для инертных газов 10фс — ОК,

при прямом учёте связей X–H 1фс — много (из-за высокой частоты

их колебаний).

Число шагов — достаточное для обеспечения достаточного усреднения

по времени, чтобы общее время было не меньше чем характеристическое

время процесса.

Начальные координаты

Оптимизация геометрии

Задание начальных скоростей
Уравновешивание системы

Основной расчёт

Анализ
Визуализация

Элементарная ячейка
Число частиц

Метод и параметры расчёта

Метод описания системы
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Молекулярная динамика

Этапы расчёта методом молекулярной динамики (2)

Начальные координаты:

для молекул «нормальная» геометрия;

расположение молекул — не обязательно, но желательно избегать

слишком коротких контактов.

Оптимизация геометрии:

Цель — свести все силы на атомах в 0, т. е. получается система в

(локальном) минимуме при 0К.

Начальные скорости:

В зависимости от кинетической энергии/температуры на каждую степень

свободы вычисляется как: 〈
1

2
mvα

〉
= kbt

Для больших температур, возможно, нагрев в несколько этапов с

уравновешиванием на каждом этапе.

Уравновешивание системы [equilibration]:

До прекращения сильных изменений энергии/температуры из-за плохого

начального приближения и произвольно присвоенных скоростей.

Основной расчёт:

Требуемое число шагов с сохранением траектории для последующего

анализа.

Начальные координаты

Оптимизация геометрии

Задание начальных скоростей
Уравновешивание системы

Основной расчёт

Анализ
Визуализация

Элементарная ячейка
Число частиц

Метод и параметры расчёта

Метод описания системы
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Молекулярная динамика

Демонстрация работы молекулярной динамики

Жидкая вода

Силовое поле SPC (трёхточечное, с параметрами

близкими к TIP3P) O

H H
+0.41

−0.82

+0.41

1.0 Å

109.47°

1.0 Å

T = 298K = 25 °C

Кубическая ячейка с параметром ≈ 20 Å :

19.9807 Å для плотности воды 0.99757 г см
−3

266 молекул H2O

NVT ансамбль с термостатом Нозе-Хувера

200000 шагов по 0.001 пс = 1фс ⇒ всего 0.2 нс

Алгоритм интегрирования LEAPFROG
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Метод Монте-Карло

Метод Монте-Карло
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Метод Монте-Карло

Основа метода Монте-Карло: численное интегрирование

Пусть нам нужно вычислить интеграл

I =

∫ b

a
f(x) dx

При численном интегрированием с разбиением области интегрирования на N интервалов

длиной (b− a)/N (метод прямоугольников, трапеций и т. д.)

I =
b− a

N

N∑
i=1

f(xi) (7)



Моделирование макроскопических систем

Метод Монте-Карло

Основа метода Монте-Карло: численное интегрирование

Тот же интеграл можно переписать через среднее значение
〈
f(x)

〉
на интервале [a, b]

I =

∫ b

a
f(x) dx = (b− a)

〈
f(x)

〉
(8)

Пусть xk — случайно выбранные точки из равномерного распределения в диапазоне

[a, b], тогда 〈
f(x)

〉
=

1

N

N∑
k=1

f(xk)

С учётом формулы (8) получаем в точности выражение (7):

I =
b− a

N

N∑
k=0

f(xk)



Моделирование макроскопических систем

Метод Монте-Карло

Различные подходы к интегрированию функций

f(x)

x0 a b

Метод прямоугольников

f(x)

x0 a b

Случайная выборка

f(x)

x0 a b

Случайная выборка для «плохой» функции
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Метод Монте-Карло

Пусть w(x) — есть некоторая плотность вероятности 0 < w(x) 6 1, и∫ b

a
w(x) dx = 1

то

I =

∫ b

a
f(x) dx =

∫ b

a

[
f(x)

w(x)

]
w(x) dx (9)

Если выбирать случайные значения в соответствии с распределением w(x), то

I ≈
〈

f(xi)

w(xi)

〉
trials

=
1

N

N∑
i=1

f(xi)

w(xi)
(10)

Для равномерного распределения w(x) = 1/(b− a) = const, и снова получается

I =
b− a

N

N∑
i=1

f(xi)

Не интересно! Нужно, чтобы w(x) как можно больше походила на нашу функцию,

т. е. f(x)/w(x) ≈ const
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Метод Монте-Карло

И для молекулярных ансамблей у нас есть такая функция!

Вспомним выражение для определения средней величины, которая сейчас будет зависеть

только от координат атомов.

〈A〉 =

∫
A(r)e−βV(r)

dr∫
e−βV(r)

dr
(11)

Вспомним, что статсумма Z определяет вероятности нахождения системы в точке r,
или в классическом приближении на элементарный объём плотность вероятности:

N (r) =
e−βV(r)∫
e−βV(r)

dr
=

e−βV(r)

Z

Поэтому выражение (11) можно переписать как

〈A〉 =

∫
A(r)N (r) dr (12)

Правда пока вычисление 〈A〉 это никак не упрощает, т. к. для вычисления N (r) нужно
считать интеграл для статсуммы.
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Объединяя выражения (10) и (11):

I ≈
〈

f(xi)

w(xi)

〉
trials

=
1

N

N∑
i=1

f(xi)

w(xi)
〈A〉 =

∫
A(r)N (r) dr

Получаем:

〈A〉 ≈
1

N

N∑
i=1

A(ri)N (ri)

w(ri)
(13)

Заметим, что в (13) как w(r), так и N (r) — плотности вероятности. Также помним, что (13)

выполняется, только когда точки берутся в соответствии с w(r).

Но что, если выбрать w(r) = N (r)? Тогда всё совсем просто:

〈A〉 ≈
1

N

N∑
i=1

A(ri) (14)

Но как выбирать точки из N (r)? Ведь оно вычисляется через статсумму . . .
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Но что если нам нужно знать не абсолютную, а относительную вероятность для двух

точек r1 и r2 ? Тогда мы, по сути, избавляемся от Z:

N (r2)

N (r1)
= e−β(V(r2)−V(r1))

(15)

Выражение (15) будет выполняться, если вероятность нахождения системы в состоянии

r будет пропорционально N (r), или фактору Больцмана с любым каким коэффициентом
(не обязательно 1/Z).

Для практических целей нам нужно научиться таким образом выбирать вероятность

перехода из точки r1 в r2, π(r1 → r2), чтобы выражение (15) выполнялось.

Фактически, зная предыдущую конфигурацию r1 мы либо должны сгенерировать

новую конфигурацию r2 — (например, сместив атом) и принять или отвергнуть её

с определённой вероятностью.
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Если мы сгенерируем M различных конфигураций системы из Γ (причём намного

большим, чем точек в Γ), то необходимо, чтобы m(r) — число конфигураций вблизи

r было пропорционально N (r).

Более того, если система в равновесии, то равновесия среднее число шагов r1 в r2
не должен нарушать равновесия, т. е. среднее число переходов из точки r1 должно

быть равно среднему числу переходов из остальных точек в r1, или даже более

строго: среднее число переходов из r1 в r2 должно компенсироваться таким же

числом переходов из r2 в r1

N (r1)π(r1 → r2) = N (r2)π(r2 → r1)

В строгом выводе рассматриваются две величины: вероятность того, что шаг будет

сделан α(r1 → r2), и вероятность того, что он будет принят acc(r1 → r2); тогда

π(r2 → r1) = α(r1 → r2)× acc(r1 → r2)

В чаще всего используемом симметричном варианте α(r1 → r2) = α(r2 → r1),
поэтому

N (r1)acc(r1 → r2) = N (r2)acc(r2 → r1)

И окончательно

acc(r1 → r2)

acc(r2 → r1)
=
N (r2)

N (r1)
= e−β(V(r2)−V(r1))

(16)
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acc(r1 → r2)

acc(r2 → r1)
=
N (r2)

N (r1)
= e−β(V(r2)−V(r1))

(16)

Этому соотношению отвечает много схем, самая известная носит фамилию (!) Метрополиса.

acc(r1 → r2) =
N (r2)

N (r1)
, если N (r2) < N (r1)

= 1, если N (r2) > N (r1)

(17)

Шаг будет безусловно принят, если N (r2) > N (r1), что то же самое что V(r2) 6 V(r1).

Если энергия новой конфигурации выше, то вероятность принятия шага определяется фактором

Больцмана e−β
(
V(r2)−V(r1)

)
из (16).

Очевидно, что в методе Метрополиса 0 < e−β
(
V(r2)−V(r1)

)
6 1.

На практике генерируется случайное число Y из (псевдо)равномерного распределения в диапазоне

[0, 1] и шаг принимается, если Y < e−β
(
V(r2)−V(r1)

)
.
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Измерение глубины Нила обычным интегрированием и методом Монте-Карло

From D. Frenkel and B. Smit “Understanding Molecular Simulations: from Algorithms to Applications”, Academic Press, 2002
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Необходимое число шагов:

обычно намного выше, чем в молекулярной динамике для

достижения сходимости;

иногда несколько независимых моделирований с разных

начальных конфигураций

Но требует намного меньше расчётов! И хорошо параллелится.

Случайный шаг: случайное смещение одного или нескольких

атомов, поворот молекулы или жёсткой группы и т. д.

например x2 = x1 − 0.5 ∗ (RAND)(0, 1) ∗ δmax

слишком большое смещение — слишком мало принятых

шагов ⇒ медленная сходимость

слишком малое смещение — слишком много принятых

шагов ⇒ медленная сходимость

хорошо, чтобы ≈ 50 % было принято, но это не точно.

лучше всё-же смещать один атом/группу

Расчёт энергии:

При смещении одного атома/группы приходится

перерассчитывать только связанные с ними части

энергии

Начальные координаты

Оптимизация геометрии

Случайный шаг моделирования

Расчёт энергии

Элементарная ячейка
Число частиц

Метод и параметры расчёта

Метод описания системы

Принять шаг или нет?

Сохранение новых
значений

Сохранение старых
значений

Требуемое число шагов

Да Нет
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