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Традиционная и квантовая физика

Квантовая физика
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Волновая функция: Ψ(r, t) — комплексная функция от координат и времени

Квадрат волновой функции |Ψ(r, t)|2 dr — определяет вероятность найти частицу в

объёме dr ∫
|Ψ(r, t)|2 dr = 1

Положение точно не определено

Импульс точно не определён
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Традиционная и квантовая физика

Функции и векторы

Ψ(r, t) ≡ |Ψ(r, t)〉

Если {ϕi(x)} — полный набор (базисных) функций (
∫
ϕi(x)ϕj(x) dx = δij), то

f(x) =
∞∑
i=1

aiϕi(x)

Тогда к качестве векторного представления f(x) можно выбрать {a1, a2, . . . }
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Традиционная и квантовая физика

Волновые функции Векторы и функции: бра|кет обозначение

〈bra| c |ket〉
Вектор-строка:

〈ψ| =
(
ψ∗1 ψ∗2 . . .

)
Вектор-столбец:

|χ〉 =

 χ1
χ2
. . .


Скалярное произведение:

〈χ|ψ〉 =
∞∑
i=1

ψ∗i χi

Норма (длина) вектора (в квадрате):

〈χ|χ〉 =
∞∑
i=1

χ∗i χi
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Традиционная и квантовая физика

Волновые функции и векторы: бра|кет обозначение

|ψ〉 = ψ(r)

〈ψ|χ〉 =

∫
ψ(r)∗χ(r) dr

〈χ|χ〉 =

∫
χ(r)∗χ(r) dr > 0
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Любая аналогия в квантовой механике это только аналогия и скорее всего не верна!
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Измеряемые величины, операторы и функции состояния

Измеряемые величины, операторы и функции состояния

Каждой измеримой физической величине ставится в соответствие эрмитов

(самосопряжённый) оператор:

A = (A∗)ᵀ

В случае матрицы с действительными значениями эрмитовой будет матрица, для которой A = Aᵀ
,

т. е. симметричная матрица.

При действии этого оператора на функцию вообще говоря, получается другая функция:

Â |ψ〉 = |ϕ〉

Но для некторых функций действие оператора сводится к домножению вектора на

число:

Â |ψn〉 = An |ψn〉

В результате измерения величины A могут быть получены только значения An. Они

всегда действительные (из свойства эрмитовых операторов).

An — собственные значения оператора

ψn — собственные функции оператора

〈ψ|Âϕ〉 = 〈Âψ|ϕ〉
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Измеряемые величины, операторы и функции состояния

Собственные функции операторов

Функция f(x) = sin(2x)

для оператора d
dx не является собственной функцией:

d sin(2x)
dx = 2 cos(2x)

для оператора d2

dx2 является собственной функцией:
d2 sin(2x)

dx2 = −4 sin(2x)

(собственное значение -4)
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Измеряемые величины, операторы и функции состояния

Произвольная функция состояния

Набор собственных функций {|ψi〉} оператора Â образуют базис для произвольной

функции |Ψ〉:

|Ψ〉 =
∞∑
i=1

ci |ψi〉 = c1 |ψ1〉+ c2 |ψ2〉+ . . .

причём
∞∑
i=1

|ci|2 = |c1|2 + |c2|2 + · · · = 1

Мистика квантовой химии, что при (единичном) измерении величины A будут получатся

значения только из набора An с вероятностями |cn|2.
При многократном измерении, среднее значение величины будет:

〈A〉 =
〈Ψ|A|Ψ〉
〈Ψ|Ψ〉

(1)

Несчастье кота Шрёдингера в том что Ĉ — оператор жизнеспособности кота имеет две собственные

функции |A〉 — кот жив, и |D〉 — кот мёртв. Кот, который гуляет по двору, находится в состоянии

|A〉. Но кот в закрытой коробке находится в состоянии:

|C〉 = 0.8 |A〉+ 0.6 |B〉

И при «измерении» с вероятностью 0.36 кот мёртв. Узнаем мы это только открыв крышку!
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Измеряемые величины, операторы и функции состояния

Примеры операторов

Оператор координаты:

x̂ = x (2)

Оператор импульса:

p̂x = −i h̄
∂

∂x
=

h̄
i
∂

∂x
(3)

Оператор кинетической энергии:

T̂ = −
h̄2

2m
∇2 = −

h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
=

p̂2
x + p̂2

y + p̂2
z

2m
(4)

T =
mv2

x

2
+

mv2
y

2
+

mz2
x

2
=

p2
x + p2

y + p2
z

2m


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Измеряемые величины, операторы и функции состояния

Одновременное изменение величин

А часто ли встречаются такие состояния

|Ψ〉 =
∞∑
i=1

ci |ψi〉 = c1 |ψ1〉+ c2 |ψ2〉+ . . .

не соответствующие какому-либо собственному значению?

Да! И причина: не все величины можно измерить одновременно (однозначно): принцип

неопределённости.

∆x∆p >
h̄
2

Измеримы ли совместно функции, определяется коммутатором:

[Â, B̂] = ÂB̂− B̂Â
{

= 0, измеримы

6= 0, неизмеримы
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Измеряемые величины, операторы и функции состояния

Координата и импульс

Проверяем:

[x̂, p̂x] |ψ〉 = x̂ |p̂xψ〉 − p̂x |x̂ψ〉 =

= x
h̄
i
∂ψ(x)

∂x
−

h̄
i
∂xψ(x)

∂x
=

h̄
i

(
x
∂ψ(x)

∂x
−x

∂ψ(x)

∂x
− ψ(x)

)
= ih̄ |ψ〉 ⇒

[x̂, p̂] = ih̄

x

px

0
Δx

Δpx

x

px

0
Δx

Δpx

x

px

0
Δx

Δpx

Но легко показать, что [
x̂, p̂y

]
= [ŷ, p̂x] = 0, и т. д.
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Измеряемые величины, операторы и функции состояния

Одноэлектронный атом

e−

Z+

Модель Бора Реальный атом
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Момент количества движения

Классический момент импульса

В классической механике момент количества движения (момент импульса, угловой

момент):

L = r× p =

∣∣∣∣∣∣
i j k
rx ry rz
px py pz

∣∣∣∣∣∣ =

rypz − pyrz
rxpz − pxrz
rxpy − pxry


Векторная величина L ⊥ r и p; как и p сохраняется в замкнутой системе.

L

p

r

L

p

r

L

p

r
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Момент количества движения

Квантовый момент импульса в атоме

e−

Z+

L
pr

Момент импульса в боровском атоме?

L̂x = r̂yp̂z − p̂y r̂z = −ih̄

(
r̂y
∂

∂z
− r̂z

∂

∂y

)

L̂y = r̂xp̂z − p̂x r̂z = −ih̄
(

r̂x
∂

∂z
− r̂z

∂

∂x

)

L̂z = r̂xp̂y − p̂x r̂y = −ih̄

(
r̂x
∂

∂y
− r̂y

∂

∂x

) (5)

Но получается, что...[
L̂x, L̂y

]
= ih̄L̂z

[
L̂y, L̂z

]
= ih̄L̂x

[
L̂x, L̂z

]
= ih̄L̂y

Для «вектора» L нельзя измерить даже две компоненты координаты одновременно!

С соотношением неопределённости ∆Lx∆Ly >
h̄
2 〈Lz〉
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Момент количества движения

Находить собственные функции и собственные значения удобно в сферических координатах

z

y

x

rθ

ɸ

z = r cos θ

y = r sin θ sinφ

x = r sin θ cosφ

L̂z ≡ −i h̄
∂

∂φ
(6)

Сравните:

p̂x = −ih̄
∂

∂x
(3)
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Момент количества движения

Собственные функции и собственные значения оператора L̂z

Решением

L̂z |Lz〉 = Lz |Lz〉
являются функции вида

|Lz〉 = C(r, θ)eimφ (7)

m = {. . . ,−1, 0, 1, . . . }: при провороте на 2π функция не должна меняться, а это

возможно если e0 = eim2π только при целом m.[
Формула Эйлера eiφ = cosφ + i sinφ

]

Собственные значения:

Lz = m` h̄, где m` - целое число (8)
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Момент количества движения

Собственные функции оператора L̂2

Норма (длина) вектора? Ну или квадрат?

Для L̂2 нужно решить уравнение вида

L̂2 |L2〉 = L2 |L2〉

Формульное выражение существенно сложнее:

L̂2 = L̂ · L̂ ≡ −
h̄2

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
−

h̄2

sin2 θ

∂2

∂φ2

Намного сложнее, чем для L̂z, но оператор включает уже два угла. Решение в общем
виде громоздко, и в общем случае неуникально.

Полагают, чтобы |L2〉 были также собственными функциями и для L̂z.

Можно? Да, [L̂2, L̂z] = 0.
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Момент количества движения

Собственные функции оператора L̂2

L̂2 |L2〉 = L2 |L2〉

Если выбирать решения в виде собственных функций L̂2 и L̂z, то решение однозначно:

Ym
` (θ, ϕ) = (−1)m

√
(2`+ 1)

4π

(`− m)!

(`+ m)!
P`m(cos θ) eimφ (9)

Функции зависят от двух числел ` и m.
Несколько примеров:

Y0
0 =

√
1

4π

Y0
1 =

√
3

4π
cos (θ) Y1

1 = −

√
3

8π
sin (θ)eiφ Y−1

1 =

√
3

8π
sin (θ)e−iφ

Y0
2 =

√
5

16π
(3 cos

2
(θ)− 1) Y1

2 = −

√
15

8π
sin (θ) cos (θ)eiφ
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Момент количества движения

Собственные функции оператора L̂2

Y0
0 =

√
1

4π
⇒ s

Y0
1 =

√
3

4π
cos (θ)⇒ pz

Y1
1 = −

√
3

8π
sin (θ)eiφ Y−1

1 =

√
3

8π
sin (θ)e−iφ

−

√
3

8π
sin (θ)(cos(φ) + i sin(φ))

√
3

8π
sin (θ)(cos(φ)− i sin(φ))

1
√

2

(
−Y1

1 + Y−1
1

)
⇒ px

i
√

2

(
Y1

1 + Y−1
1

)
⇒ px
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Момент количества движения

Собственные значения оператора L̂2

L̂2 |L2〉 = L2 |L2〉

L2 = `(`+ 1)h̄2 (10)

где ` = 0, 1, . . .: целое; ` > 0, т. к связана с нормой вектора!

Вспомним, что Lz = m` h̄, а длина вектора L2 = L2
x + L2

y + L2
z

Поэтому `(`+ 1)h̄2 > m2
` h̄

2, и для `:

` > |m|, ` > 0

Lz = −ħ

Lz = +ħ

Lz = 0

z

Lz = −ħ

Lz = +ħ

Lz = 0

ℓ = 2

L = √6ħ

Lz = −2ħ

Lz = +2ħ

z

ℓ = 1

L = √2ħ

  

z 

y 
  

x   

    

0 

+2ħ

+ħ

−2ħ

−ħ
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Момент количества движения

Спин

У электрона (и других частиц) есть внутренний момент импульса: спин.

С точки зрения физики это тот же самый момент импульса, т. е. справедливы выражения:

Ŝ2 |S2〉 = S2 |S2〉

Ŝz |Sz〉 = Sz |Sz〉

Только функции |S2〉 и |Sz〉 формальные. Но решения те же:

S2 = s(s + 1)h̄2

Sz = ms h̄
(11)

s = 1/2 · k; k = {0, 1, 2, . . . } и постоянна для частицы.

Для электрона и других фермионов (протона, нейтрона, кварков)

s = 1/2

Т.к. s > |ms|, то для электрона ms = ±1/2

а для фотонов s = 1 и ms = −1, 0, 1,

2 

1

  

  

  

0 

z

+½ħ

−½ħ

y

x

s = ½ S = √3/2ħ

2 

1
−

+
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Момент количества движения

Оператор полного момента импульса

Поскольку «обычный» момент импульса и спин один и тот же физический феномен

~J = ~L + ~S

L

SL+S

Lx Sx

Ly

Sy

Оператор полного момента импульса записывается как

Ĵ = L̂ + Ŝ (12)

L и S не настоящие векторы!

J2 = j(j + 1)h̄2 |`− s| 6 j 6 `+ s
Jz = mj h̄ mj = m` + ms

(13)
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Атом водорода

Решение уравнение Шрёдингера для атома H

Нахождение энергии и её собственных функций для атома H теперь довольно «простое».

Стационарное уравнение Шрёдингера:

ĤΨ(R, r) = EΨ(R, r) (14)

Оператор гамильтониана (полной энергии): Ĥ = T̂ + V̂
Кинетическая энергия

T̂ =
p̂2

2m
= −

h̄2

2m
∇2 (4)

А потенциальная энергия соответствует классическому аналогу (закону Кулона). Тогда

Ĥ = −
h̄2

2M
∇2

R −
h̄2

2me
∇2

r −
e2

4πε0|R− r|
(15)

В приближении Борна-Оппенгеймера и атомных единицах

масса — me, заряд — e, расстояние — a0, энергия — H:

Ĥ = −
1

2
∇2 −

1

r
(16)
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Атом водорода

Решение уравнение Шрёдингера для атома H

Аналитическое решение возможно в сферической системе координат

Тогда Ψ(x, y, z)⇒ Ψ(r, θ, φ)

Оператор кинетической энергии:

T̂ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

z

y

x

rθ

ɸ
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Атом водорода

Решение уравнение Шрёдингера для атома H

Аналитическое решение возможно в сферической системе координат

Тогда Ψ(x, y, z)⇒ Ψ(r, θ, φ)

Оператор кинетической энергии:

T̂ =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

Но

−
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
−

1

sin2 θ

∂2

∂φ2
= L̂2

Ĥ =
1

r2
∂

∂r

(
r2

∂

∂r

)
−

1

r2
L̂2 −

1

r

Первая часть оператора включает производные только от r, а вторая — от θ и φ.
Поэтому решения можно искать для функции в виде:

Ψ = Ψ(r)Ψ(θ, φ)

z

y

x

rθ

ɸ



Квантовохимическое описание молекул

Атом водорода

«Эффективный потенциал» (` = 1)
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Атом водорода
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Атом водорода
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Квантовохимическое описание молекул

Атом водорода

Решение уравнение Шрёдингера для атома H

ĤΨ(r)Ψ(θ, φ) = EΨ(r)Ψ(θ, φ)

Ĥ =
1

r2
∂

∂r

(
r2

∂

∂r

)
−

1

r2
L̂2 −

1

r

Для Ψ(θ, φ) решение мы уже находили, это Ym
` (θ, φ)

Для радиальной части решение в общем виде также сложно но функция также будет

зависеть от двух целых чисел `, и нового n.

Итого,

Ψ(r, θ, φ) = Rn`(r)Ym
` (θ, φ) (17)

где

n > ` > |m|, n > 0



Квантовохимическое описание молекул

Атом водорода

Полный набор квантовых чисел

Итак:

Ψ = Ψn,`,m,ms

Квантовые числа:

n — главное, определяет уровень энергии

` — орбитальное, определяет вид орбирали (0 ⇒ s, 1 ⇒ p,2 ⇒ d и т. д.)

m ≡ m` — магнитное, определяет «пространственное расположение»

ms — спиновое, определяет проекцию спина

Для изолированного атома энергия определяется только n!

Квантовые числа n, `,m` и ms образуют полный набор и соответствуют максимальному

числу одновременно измеряемых величин: энергии, квадрата момента импульса, прооекции

момента импульса на ось z и проекции спина на ось z.



Квантовохимическое описание молекул

Атом водорода

Собственные значения Rn`(r): уровни энергии

E1 =
1

2
H = 1 Ry = −

h̄2

2ma2
0

En =
E1

n2

(18)
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Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Функции Rn`(r) для состояния n = 1 [1s]

R10 = 2e−r
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R10(r) — волновая функция: не имеет физической интерпретации

R10(r)2
— квадрат волновой функции: вероятность обнаружить электрон в

точке на расстоянии r

4πr2 · R10(r)2
— радиальная плотность распределения: вероятность обнаружить электрон в

любой точке сферы радиусом r



Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Функции Rn`(r) для состояния n = 2 ` = 0 [2s]
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Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Функции Rn`(r) для состояния n = 3 ` = 0 [3s]
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Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Функции Rn`(r) для состояния n = 2 ` = 1 [2p]
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Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Сравнение функций Rn`(r) для разных орбиталей
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Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Сравнение функций 4πr2 · R2
n`(r) для 1s− 3s орбиталей

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

1s

2s

3s



Квантовохимическое описание молекул

Радиальная часть волновой функции атома H

Сравнение функций 4πr2 · R2
n`(r) для n = 3
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Квантовохимическое описание молекул

Атом водорода: атомные орбитали

Примеры орбиталей Rn`(r)Y
m
` (θ, φ) : 1s− 2p

1s 2s

2pz Ψ211, 	 90◦ 2px
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Атом водорода: атомные орбитали

Примеры орбиталей Rn`(r)Y
m
` (θ, φ) : 3s− 3p

3s 3pz

Ψ311, 	 90◦ 3px
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