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Одноэлектронный атом

Одноэлектронная волновая функция

Орбиталь — одноэлектронная волновая функция:
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Многоэлектронный атом

Многоэлектронный атом: (He)
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Аналитически не решается...



Многоэлектронный атом

Многоэлектронные системы: прямое численное решение

E =
〈Ψ(r1, r2, . . . , rN)|Ĥ|Ψ(r1, r2, . . . , rN)〉
〈Ψ(r1, r2, . . . , rN)|Ψ(r1, r2, . . . , rN)〉

=

∫
Ψ
∗
(r1, r2, . . . , rN)ĤΨ(r1, r2, . . . , rN)∫

Ψ
∗
(r1, r2, . . . , rN)Ψ(r1, r2, . . . , rN)

dr1 dr2 . . . drN

Интегрирование по 3N переменным: сложность растёт как p3N

(p — число точек численного интегрирования)

для p = 10 и N = 66 (тимин) нужно минимум 1× 10
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Многоэлектронная волновая функция из одноэлектронных

Произведение Хартри

Если частицы не взаимодействуют, то многочастичная волновая функция —

произведение одночастичных:

ΨH(r1, r2, . . . , rN) = ψ(r1)ψ(r2) · · ·ψ(rN)

«произведение Хартри» [ “Hartree product” ].

Тогда

|ΨH(r1, r2, . . . , rN)|2 = |ψ(r1)|2|ψ(r2)|2 · · · |ψ(rN)|2

Для полной системы вероятность того, что частица 1 находится в (окрестности) r1, частица 2 в r2 и т. д.

равна произведению вероятностей для невзаимодействующих частиц.

∫
|ΨH(r1, r2, . . . , rN)|2 dr1 dr2 . . . drN =

∫
|ψ(r1)|2 dr1

∫
|ψ(r2)|2 dr2 · · ·

∫
|ψ(rN)|2 drN = 1

Это приближние к реальности, но не совсем точное...



Многоэлектронная волновая функция из одноэлектронных

Спин-орбитали

Спин-орбиталь: (χ) пространственная часть (ψ) + спиновая часть (α, β)

α(ω) ≡ α, β(ω) ≡ β — псевдофункции (ω — псевдопеременная):

Над ними есть правила проведения фрифметических операций и интегрирования, но аналитического вида они не

имеют.

χ1(x) = ψ1(r)α(ω) ≡ ψ1(r)α

χ2(x) = ψ1(r)β(ω) ≡ ψ1(r)β

χ2(x) = ψ1(r)β(ω) ≡ ψ1(r)β

. . .

χ8(x) = ψ4(r)β(ω) ≡ ψ4(r)β

α : ms = +1/2 («спин проекция спина вверх»)

β : ms = −1/2 («спин проекция спина вниз»)

N пространственных орбиталей⇒ 2N спин орибаталей

|χ8(x)〉 = |ψ4(r)〉 |↓〉



Многоэлектронная волновая функция из одноэлектронных

В произведении Хартри нарушаются два принципа:

Неразличимости частиц

|Ψ(x1, x2)|2 = |Ψ(x2, x1)|2

Антисимметричности волновой функции для фермионов (частиц со спином 1/2, 3/2, 5/2)

Ψ(x1, x2) = −Ψ(x2, x1)

Ψ(x1, x2) = 1s(x1)2pz(x2)

0 = {0, 0, 0, ↑} c1 = {0, 0, 1, ↑}

Ψ(0, c1) = 1s(0)2pz(c1) 6= 0

Ψ(c1, 0) = 1s(c1)2pz(0) = 0

1s

2pz



Многоэлектронная волновая функция из одноэлектронных

Чтобы сделать частицы неразличимыми, можно взять линейную комбинацию функций:

Ψ(x1, x2) =
1
√

2
[χ1(x1)χ2(x2)︸ ︷︷ ︸

A

±χ1(x2)χ2(x1)︸ ︷︷ ︸
B

]

Тогда замена x1 ↔ x2 приведёт к замене A ↔ B

Квадрат функции не поменяется!

«+»: симметричная функция — для бозонов

«−»: антисимметричная функция — для фермионов



Многоэлектронная волновая функция из одноэлектронных

Слейтеровский детерминант

Обобщение на N электронов:

Ψ =
1
√

N!
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∣∣∣∣∣∣∣∣∣∣
(2)

часто используется сокращённая запись в виде вектора:

Ψ = |χ1χ2 . . . χN〉

или вообще

Ψ = |12 . . .N〉

Поменяв строки → поменяем координаты → поменяем знак (свойство детерминанта !).

Сделаем две одинаковые орбитали → детерминант ⇒ 0 ← принцип запрета Паули.



Интегралы для слейтеровских детерминантов

Ĥ |Ψ(x1, x2)〉 = E |Ψ(x1, x2)〉
|Ψ〉 = |χ1χ2〉

E = 〈Ψ|Ĥ|Ψ〉

Ĥ[χ1(x1)χ2(x2)− χ1(x2)χ2(x1)] = E[χ1(x1)χ2(x2)− χ1(x2)χ2(x1)]

E =
1

2

∫
dx1dx2[χ

∗
1 (x1)χ

∗
2 (x2)− χ∗1 (x2)χ

∗
2 (x1)]Ĥ[χ1(x1)χ2(x2)− χ1(x2)χ2(x1)] (3)

Множитель 1/2 берётся из возведения в квадрат коэффициента перед детерминантом.
Перемножив, получаем сумму интегралов:



Интегралы для слейтеровских детерминантов

1

2

∫
[χ
∗
1 (x1)χ

∗
2 (x2)Ĥχ1(x1)χ2(x2)] dx1 dx2−

1

2

∫
[χ
∗
1 (x1)χ

∗
2 (x2)Ĥχ1(x2)χ2(x1)] dx1 dx2−

1

2

∫
[χ
∗
1 (x2)χ

∗
2 (x1)Ĥχ1(x1)χ2(x2)] dx1 dx2+

1

2

∫
[χ
∗
1 (x2)χ

∗
2 (x1)Ĥχ1(x2)χ2(x1)] dx1 dx2 (4)

2E = 〈χ1χ2|Ĥ|χ1χ2〉 − 〈χ1χ2|Ĥ|χ2χ1〉 − 〈χ2χ1|Ĥ|χ1χ2〉+ 〈χ2χ1|Ĥ|χ2χ1〉

В записи последнего типа порядок функций имеет значение: n-я функция в записи

зависит от переменной xn



Интегралы для слейтеровских детерминантов

2E = 〈χ1χ2|Ĥ|χ1χ2〉 − 〈χ1χ2|Ĥ|χ2χ1〉 − 〈χ2χ1|Ĥ|χ1χ2〉+ 〈χ2χ1|Ĥ|χ2χ1〉

Гамильтониан записывается в виде:

Ĥ =
∑

i

ĥ(i) +
∑

i

∑
j

v̂(i, j)

где

ĥ(i) = −
1

2
∇2

i −
∑
A

ZA

RAi

v̂(i, j) =
1

rij
И ещё

〈χ1|χ1〉 = 1

〈χ1|χ2〉 = 0



Интегралы для слейтеровских детерминантов

2E[ĥ(1)] = 〈χ1χ2|ĥ(1)|χ1χ2〉 − 〈χ1χ2|ĥ(1)|χ2χ1〉
0

−〈χ2χ1|ĥ(1)|χ1χ2〉
0

+ 〈χ2χ1|ĥ(1)|χ2χ1〉

E[ĥ(1)] =
1

2
〈χ1|ĥ(1)|χ1〉+

1

2
〈χ2|ĥ(1)|χ2〉

E[ĥ(2)] =
1

2
〈χ1|ĥ(1)|χ1〉+

1

2
〈χ2|ĥ(1)|χ2〉

Или в сумме

E[ĥ] = 〈χ1|ĥ(1)|χ1〉+ 〈χ2|ĥ(1)|χ2〉 =
2∑

i=1

〈χi|ĥ|χi〉 =
2∑

i=1

〈i|ĥ|i〉 (5)



Интегралы для слейтеровских детерминантов

v̂(i, j) =
1

rij

Т. к. в v̂(1, 2) нет дифференцирования, функции можно группировать произвольно
(не забывая про условные обозначения!)

2E[v̂(1, 2)] = 〈χ1χ2|v̂(1, 2)|χ1χ2〉
A

−〈χ1χ2|v̂(1, 2)|χ2χ1〉
B

−〈χ2χ1|v̂(1, 2)|χ1χ2〉
B

+ 〈χ2χ1|v̂(1, 2)|χ2χ1〉
A

E[v̂(1, 2)] =
∫

[χ
∗
1 (x1)χ1(x1)

1

r12
χ
∗
2 (x2)χ2(x2)] dx1 dx2

−
∫

[χ
∗
1 (x1)χ

∗
2 (x2)

1

r12
χ2(x1)χ1(x2)] dx1 dx2

= [11|22]− [12|21]

В общем случае при N > 2

E[v̂(i, j)] =
N∑

i=1

N∑
j=i+1

(
[ii|jj]− [ij|ji]

)
(6)



Интегралы для слейтеровских детерминантов

[ii|jj] ≡
∫

[χ
∗
1 (x1)χ1(x1)

1

r12
χ
∗
2 (x2)χ2(x2)] dx1 dx2 — кулоновский интеграл

классическое отталкивание электронов друг от друга

«+»: дестабилизирует систему

[ij|ji] =

∫
[χ
∗
1 (x1)χ2(x1)

1

r12
χ
∗
2 (x2)χ1(x2)] dx1 dx2 — обменный интеграл

нет классическиого аналога

«−»: стабилизирует систему



Интегралы для слейтеровских детерминантов

Но у электрона ещё есть спин!

Каждой пространственной орбитали |ϕ〉 ≡ ϕ(r) соответствуют две спин-орибтали

χ1(x) = |ϕ〉 |↑〉 ≡ |ϕα〉 ≡ ϕ(r)α(ω) ≡ ϕ(r)α

χ2(x) = |ϕ〉 |↓〉 ≡ |ϕβ〉 ≡ ϕ(r)β(ω) ≡ ϕ(r)β

Вспомним, что

〈α|α〉 = 〈β|β〉 = 1

〈α|β〉 = 〈β|α〉 = 0



Интегралы для слейтеровских детерминантов

В выражении

E[ĥ] =
N∑

i=1

〈χi|ĥ|χi〉 =
N∑

i=1

〈i|ĥ|i〉 (5)

это ничего не меняет, т. к. интегрирование идёт по одной и той же орбитали.

Т. е. поскольку, например,

〈αϕi|ĥ|ϕiα〉 = 〈ϕi|ĥ|ϕi〉 〈α|α〉 = 〈ϕi|ĥ|ϕi〉

Оно преобразуется в

E[ĥ] = 2
N/2∑
i=1

〈ϕi|ĥ|ϕi〉 ≡ 2
N/2∑
i=1

(i|ĥ|i) ≡ 2
N/2∑
i=1

hii (7)



Интегралы для слейтеровских детерминантов

Кулоновский интеграл преобразуется в

[ii|jj] ≡
∫

[χ
∗
1 (x1)χ1(x1)

1

r12
χ
∗
2 (x2)χ2(x2)] dx1 dx2

=

∫
[ϕ
∗
1 (r1)α(ω1)ϕ1(r1)α(ω1)

1

r12
ϕ
∗
2 (r2)α(ω2)ϕ2(r2)α(ω2)] dr1 dr2 dω1 dω2

=

∫
[ϕ
∗
1 (r1)ϕ1(r1)

1

r12
ϕ
∗
2 (r2)ϕ2(r2)] dr1 dr2

≡ (ii|jj) ≡ Jij



Интегралы для слейтеровских детерминантов

Для обменного есть два варианта: если у электронов совпадает спин

[ij|ji] ≡
∫

[χ
∗
1 (x1)χ2(x1)

1

r12
χ
∗
2 (x2)χ1(x2)] dx1 dx2

=

∫
[ϕ
∗
1 (r1)α(ω1)ϕ2(r1)α(ω1)

1

r12
ϕ
∗
2 (r2)α(ω2)ϕ1(r2)α(ω2)] dr1 dr2 dω1 dω2

=

∫
[ϕ
∗
1 (r1)ϕ2(r1)

1

r12
ϕ
∗
2 (r2)ϕ1(r2)] dr1 dr2

≡ (ij|ji) ≡ Kij

А если не совпадает

[ij|ji] ≡
∫

[χ
∗
1 (x1)χ2(x1)

1

r12
χ
∗
2 (x2)χ1(x2)] dx1 dx2

=

∫
[ϕ
∗
1 (r1)α(ω1)ϕ2(r1)β(ω1)

1

r12
ϕ
∗
2 (r2)β(ω2)ϕ1(r2)α(ω2)] dr1 dr2 dω1 dω2

= 0

Таким образом, вклад обменных интегралов (стабилизирующий!) — только для электронов

с одним направлением спина.



Интегралы для слейтеровских детерминантов

Суммируя,

E = 2
N/2∑

i

(i|ĥ|i) +

N/2∑
i

N/2∑
j>i

(
(ii|jj)−

1

2
(ij|ji)

)
(8)

Или

E = 2
N/2∑

i

hii +

N/2∑
i

N/2∑
j

(2Jij − Kij)



Интегралы для слейтеровских детерминантов

Примеры

|1s ↑〉 ≡ 1 |1s ↓〉 ≡ 1̄ |2s ↑〉 ≡ 2

Атом He, в основном состоянии:

E = (1|ĥ|1) + (1̄|ĥ|1̄) + (11|1̄1̄) = 2(1|ĥ|1) + (11|1̄1̄) = 2h11 + J11̄
Нет обменного вклада!

Атом Li, в основном состоянии:

E = (1|ĥ|1) + (1̄|ĥ|1̄) + (2|ĥ|2) + (11|1̄1̄) + (11|22) + (1̄1̄|22)− (12|21) =

= h11 + h1̄1̄ + h22 + J11̄ + J12 + J1̄2 − K12



Интегралы для слейтеровских детерминантов

Правило Хунда

Если рассмотреть вклад только от p-орбиталей:

1 2 3

Ep = h11 + h22 + J12 − K12

1 2 3

Ep = h11̄ + h11̄ + J11̄



Метод Хартри-Фока

МО ЛКАО

Одноэлектронные орбитали: {χi(x)}

f̂i |χi〉 = εi |χi〉

Для каждой одноэлектронной орбитали нужен свой оператор:

f̂i(x1) = ĥi(x1) +
∑
j 6=i

(
Ĵj(x1)− K̂j(x1)

)

Ĵj(x1)χi(x1) =

[∫
χ
∗
j (x2)χj(x2)

1

r12
dx2

]
χi(x1)

K̂j(x1)χi(x1) =

[∫
χ
∗
j (x2)χi(x2)

1

r12
dx2

]
χj(x1)

Чтобы оператор не зависел от орбитали, ограничение (i 6= j) убирают, и оператор

Фока записывается в виде:

f̂(x1) =
∑

j

(
ĥj(x1) + Ĵj(x1)− K̂j(x1)

)



Метод Хартри-Фока

f̂(x1) = ĥ(x1) +
∑

j

(
Ĵj(x1)− K̂j(x1)

)

f̂(x1) = ĥ(x1) + v̂HF
(x1) (9)

f̂ |χi〉 = εi |χi〉 (10)



Метод Хартри-Фока

Если каждая из спин-орбиталей представляется в виде линейеной комбинации базисных

функций

χi =
K∑
µ=1

cµiχ̃µ

f̂

 K∑
µ=1

ciµχ̃µ

 = εi

 K∑
µ=1

ciµχ̃µ



εi =

(∑
µ

ciµχ̃
∗
µ

)
f̂

(∑
ν

ciν χ̃
∗
ν

)
(∑
µ

ciµχ̃
∗
µ

)(∑
ν

ciν χ̃
∗
ν

)

Sµν =

∫
χ̃
∗
µ(x)χ̃ν(x) dx

Fµν =

∫
χ̃
∗
µ(x)̂fχ̃ν(x) dx

FC = SCε (11)



Метод Хартри-Фока

χi =
K∑
µ=1

cµiχ̃µ

FC = SCε (11)

Sµν =

∫
χ̃
∗
µ(x)χ̃ν(x) dx

Fµν =

∫
χ̃
∗
µ(x)̂fχ̃ν(x) dx

C =


c11 c12 . . . c1ν
c21 c22 . . . c2ν
. . . . . . . . . . . .
cµ1 cµ2 . . . cµν





Метод Хартри-Фока

f̂(r) = ĥ(r) +

N/2∑
i=1

(
2Ĵi(r)− K̂i(r)

)

fµν = hµν +

N/2∑
i=1

(
2(µν|ii)− (µi|iν)

)

ϕi(r) =
K∑
µ

cµiϕ̃µ

fµν = hµν +

N/2∑
i=1

K∑
λ

K∑
σ

c∗λicσi(2[µν|λσ]− [µσ|λν])

= hµν +
K∑
λ

K∑
σ

Dσλ

(
[µν|λσ]−

1

2
[µσ|λν]

)



Метод Хартри-Фока

Матрица плотности (порядков связей)

ϕi(r) =
K∑
µ

cµiϕ̃µ

D =

N/2∑
i=1


c∗1 c1 c1c2 . . . c∗1 cK
c∗2 c1 c2c2 . . . c∗2 cK
. . . . . . . . . . . .

c∗Kc1 c∗Kc2 . . . c∗KcK





Метод Хартри-Фока

Алгоритм расчёта методом HF (1)

1. Молекула и базисный набор

Для молекулы/атома: положение атомов (центров базисных функций)

и мультиплетность

Базисные наборы: МО-ЛКАО, рассмотрены далее

ϕi(r) =
K∑
µ

cµiϕ̃µ

2. Матрица перекрывания S

Sµν =

∫
ϕ̃
∗
µ(r)ϕ̃ν(r) dr

Элементы S не зависят от коэффициентов cµ и могут быть рассчитаны

один раз

3. Выбор начальных коэффициентов {cµi}
Это коэффициенты при атомных орбиталях. По сути, для заданного

базиса именно они определяют все свойства.

Начальные значения: единичные (не очень хорошо), атомные (для

молекул), из полуэмпирических правил, и т. д.

С использованием {cµ} формируются матрицы C и D

4. Расчёт матрицы Фока
F

5. Решение уравнения
FC=SCε

6. Сходимость по C и ε?

7. Расчёт свойств

1. Молекула/атом
и базисный набор

3. Выбор начальных
коэффициентов

С

2. Расчет матрицы
перекрывания

S

Стоп

Да

Нет



Метод Хартри-Фока

Алгоритм расчёта методом HF (2)

4. Расчёт матрицы Фока F (фокиана)

fµν = hµν +
K∑
λ

K∑
σ

Dσλ

(
[µν|λσ]−

1

2
[µσ|λν]

)
Помимо матрицы плотности, для F нужно посчитать интегралы

hµν , [µν|λσ] и [µσ|λν].

Интегралы не зависят от {cµi} и могут быть вычислены один раз.

Но (!) при большом N (число электронов/орбиталей) и K
(число базисных функций) их количество становится очень большим!

Поэтому:

hµν сохраняются всегда (их мало)

четырёхцентровые интегралы хранятся в оперативной памяти

(“in-core”) — очень редко, но очень быстро!

четырёхцентровые интегралы хранятся на диске — диски

медленные, шины обмена данных медленные, используется

редко

четырёхцентровые интегралы перерасчитываются, когда надо

(“direct”) — чаще всего

4. Расчёт матрицы Фока
F

5. Решение уравнения
FC=SCε

6. Сходимость по C и ε?

7. Расчёт свойств

1. Молекула/атом
и базисный набор

3. Выбор начальных
коэффициентов

С

2. Расчет матрицы
перекрывания

S

Стоп

Да

Нет



Метод Хартри-Фока

Алгоритм расчёта методом HF (3)

5. Решение уравнения FC = SCε
Задача на псевдо-собственные значения (потому что C — матрица)

Решается (совместной) диагонализацией матриц

Решение — C, или набор коэффициентов {cµi} для каждой из МО и

ε — энергия орбиталей

6. Сходимость процесса SCF

Определяется изменением {cµi} и ε

Не всегда достигается напрямую и требует специальных алгоритмов

(damping factors, mixing, level shifting, DIIS, и т. д.)

4. Расчёт матрицы Фока
F

5. Решение уравнения
FC=SCε

6. Сходимость по C и ε?

7. Расчёт свойств

1. Молекула/атом
и базисный набор

3. Выбор начальных
коэффициентов

С

2. Расчет матрицы
перекрывания

S

Стоп

Да

Нет



Метод Хартри-Фока

Алгоритм расчёта методом HF (4)

7. Свойства

Орбитальные энергии (≈ потенциал ионизации и сродство к

электрону)

Полная энергия (для сопоставления с другими системами)

εi Не суммируются в EHF!

εi = hii +

N/2∑
j

(2Jij − Kij)

E = 2
N/2∑

i

hii +

N/2∑
i

N/2∑
j

(2Jij − Kij)

E =

N/2∑
i

(hii + εii)

Волновая функция: орбитали, электронная плотность, свойства

(дипольный момент, электростатический потенциал, поляризуемость,

. . . )

4. Расчёт матрицы Фока
F

5. Решение уравнения
FC=SCε

6. Сходимость по C и ε?

7. Расчёт свойств

1. Молекула/атом
и базисный набор

3. Выбор начальных
коэффициентов

С

2. Расчет матрицы
перекрывания

S

Стоп

Да

Нет



Метод Хартри-Фока

Ограничения и преимущества метода HF

+ Правильно и математически точно (в пределах базисного набора)

вычисляется обменный вклад в энергию

· Масштабируется «всего» как N4
от числа орбиталей

− Полностью игнорируется электронная корреляция:

нет дисперсионных взаимодействий
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