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Электронная плотность

Матрицы плотности в квантовой химии

Матрица плотности

Величина

|Ψ(x1, x2, . . . , xN)|2 ≡ Ψ
∗
(x1, x2, . . . , xN)Ψ(x1, x2, . . . , xN)

определяет вероятность нахождения системы в точке (x1, x2, . . . , xN)

Рассмотрим произведение волновых функций с несовпадающими координатами:

γ
(N)

(x1, x2, . . . , xN ; x′1, x
′
2, . . . , x

′
N) = Ψ

∗
(x1, x2, . . . , xN)Ψ(x′1, x

′
2, . . . , x

′
N)

Если функция может быть рассмотрена как вектор, то Γ
(N)

матрица, которая называется

матрицей плотности, 2N-мерная функция.

А ещё

γ
(N)

= |Ψ〉 〈Ψ|



Электронная плотность

Матрицы плотности в квантовой химии

Практический интерес представляют матрицы плотности низших порядков

(в которых большая часть переменных проинтегрирована):

приведённые матрицы плоности [reduced density matrices, RDM].

Например, матрица плотности второго порядка:

γ
(2)

(x1, x2; x
′
1, x
′
2) = N(N − 1)

∫
Ψ
∗
(x1, x2, x3, . . . , xN)Ψ(x′1, x

′
2, x3, . . . , xN) dx3 . . . dxN

γ
(2)

зависит от координат четырёх электронов (двух точек фазового протсранства). С её помощью

можно точно посчитать энергию системы, включая все обменные и корреляционные члены. По сути,

это переформулирование квантовой механики (без рецептов практического применения).

А ещё эта матрица наследует антисимметрию Ψ: при перестановке x1 ↔ x2 γ2 меняет знак .

Сложность: N12
, и это очень много (для CCSD(T) N7

). Но, по сравнению с X3N
это существенное

преимущество.
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Матрицы плотности в квантовой химии

Матрица плотности первого порядка:

γ
(1)

(x1; x
′
1) = N(N − 1)

∫
Ψ
∗
(x1, x2, . . . , xN)Ψ(x′1, x2, . . . , xN) dx2 . . . dxN

γ
(1)

несёт уже меньше информации, и её недостаточно для полной аналитической переформулировки

квантовой механики.

Уже не содержит информацию об обменно-корреляционном вкладе в энергию (но содержит

информацию о кинетической энергии).

Сложность N6
, и её уже можно использовать для реальных вычислительных задач.

Приближённые матрицы ρ1(r1, r
′
1) используются в некоторых теоретических методах (например,

модели взаимодействующих квантовых атомов

[“Interacting Quantum Atoms”, IQA], совместно с ρ2(r1, r2; r1, r2) ).
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Электронная плотность

Наконец, диагональные элементы γ
(1)

(x′1; x1),

Γ
(1)

(x1; x1) ≡ ρ(r1) = N
∫

Ψ
∗
(x1, x2, . . . , xN)Ψ(x1, x2, . . . , xN) dx2 . . . dxN (1)

Можно перейти от спин-координат к обычным, проинтегрировав спиновую часть для x1, что приведёт к 1

ρ(r) — электронная плотность.

ρ(r) — это измеряемая величина!

ρ(r) — зависит всего от 3 переменных (декартовых координат)!
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Электронная плотность

Электронная плотность для одноэлектронных орбиталей

В случае одного электрона всё просто:

ρ(r) =
∣∣ψ(r)

∣∣2
Для одноэлектронных пространственных орбиталей (закрытые оболочки):

ρ(r) = 2
N/2∑

i

∣∣ϕ(r)i
∣∣2

При использовании метода МО ЛКАО и базисных наборов {ϕ̃(r)µ}

ρ(r) =
∑
µ

∑
ν

Dµν ϕ̃(r)∗µϕ̃(r)ν

где D —матрица плотности (в терминах метода HF):

D =

N/2∑
i=1


c∗1ic1i c∗1ic2i . . . c∗1icKi
c∗2ic1i c∗2ic2i . . . c∗2icKi
. . . . . . . . . . . .

c∗Kic1i c∗Kic2i . . . c∗KicKi


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Электронная плотность

Электростатический потенциал

V(r) =
N∑

A=1

ZA
|rA − r|

−
∫

ρ(r′) dr′

|r− r′|

Полный электростатический потенциал - сумма потенциалов от ядер и электронной плотности:

VN(r) =
N∑

A=1

ZA
|rA − r|

Ve(r) = −
∫

ρ(r′) dr′

|r− r′|
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Электронная плотность

Электростатический потенциал

Полная энергия электростатического взаимодействия ядер с электронами:

ENe =

∫
dr VN(r)ρ(r) =

∫
dr

N∑
A=1

ZAρ(r)

|rA − r|

Полная энергия электростатического взаимодействия электронов с электронами:

Eee =

∫
dr Ve(r)ρ(r) = −

∫
dr ρ(r)

∫
ρ(r′) dr′

|r− r′|
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Электронная плотность

Можно ли вместо Ψ(x1, x2, . . . , xN) использовать в расчётах ρ(r)?
Можно! Этим занимается теория функционала плотности (DFT).

Теоремы Хоэнберга-Кона:

1. Для системы одинаковых взаимодействующих частиц во внешнем потенциале

Vext(r) плотность однозначно определяется этим внешним потенциалом.

И наоборот, данному распределению ρ(r) однозначно соотвестсвует Vext(r).
Таким образом, потенциал является функционалом от распределения плотности:

Vext(r) = V[ρ(r)]. Это не значит, что потенцал в точке r зависит от ρ(r) в этой
точке, но потенциал в каждой точке зависит от всей функции распределения

электронной плотности (функционал — «функция от всей функци» ).

2. Плотность однозначно определяет и полную энергию электронной системы, т. е.

энергия также является функионалом от плотности E = E[ρ(r))]. Минимум

энергии при этом соответствует функции ρ(r) основного состояния.

Исходя из DFT, любое свойство системы при заданном положении атомов опрделяется

распределением ρ(r).
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Электронная плотность

Vext и ρ(r)
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Электронная плотность

ĤΨ = EΨ

Ĥ = T̂ + V̂ee + V̂Ne + (V̂field + . . .)

Ĥ = −
N∑

i=1

1

2
∇2

i +
N∑

i=1

N∑
j=i+1

1

|ri − rj|
−

A∑
a=1

N∑
i=1

Za

|Ra − ri|
+ . . .

Первые два члена являются универсальными (одинаковы для любой системы с N электронами).

(кинетическая энергия и электрон-электронное взаимодействие)

Поэтому для конктретной системы гамильтониан однозначно определяется именно V̂ext.
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С учётом теорем Хоэнберга-Кона, можно записать:

E[ρ(r)] = T[ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)]

Опять же, характеристичным для конкретной системы является Vext[ρ(r)].

При этом только для Vext[ρ(r)] имеется универсальная формула:

Vext[ρ(r)] = −
A∑

a=1

∫
Za ρ(r)

|Ra − r|
dr

Или в общем случае для любого произвольного внешнего потенциала:

Vext[ρ(r)] =

∫
Vext(r)ρ(r) dr
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E[ρ(r)] = T[ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)]

Из универсальных членов формула имеется только для части Vee, классического кулоновского

отталкивания электронов J[ρ(r)]:

Eee[ρ(r)] =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1 dr2 + Encl[ρ(r)] = J[ρ(r))] + Encl[ρ(r)]

Множитель −1/2 в J[ρ(r)] возникает из-за интегрирования дважды одной и той же пары точек

Вторая величина, Encl[ρ(r)] — некласические вклады в энергию

(обмен, корреляция, поправка на самодействие).
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E[ρ] = T[ρ] + J[ρ] + Encl[ρ] + Vext[ρ]

Никто не знает точных выражений для T и для Encl

Подход Кона-Шема:

если волновая функция представляется одноэлектронными орбиталями {χi(r)}, которые, в свою
очередь, строятся по схеме МО ЛКАО из безисных функций {ϕ̃µ(r)}, тогда

ρ(r) =

N∑
i=1

ai|χi(r)|
2|

Для орбиталей {χi(r)} можно посчитать кинетическую энергию электронов на них:

Ts = −
1

2

N∑
i=1

∫
χ
∗
i (r)∇2

χi(r) dr

Проблема в том, что Ts это не то же самое, что T[ρ], хотя и близка к ней.
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E[ρ] = T[ρ] + J[ρ] + Encl[ρ] + Vext[ρ]

Далее, можно ввести функционал Exc[ρ], который включает Encl и разницк между Ts и T.

Опять же, вид функционала Exc[ρ] неизветен.

Важно!

Функционал — это отображение функции (всей) в R, а не композитная функция ! Т. е.

Exc[ρ(r)] 6= Exc(ρ(r))

Однако приближение Exc[ρ(r)] начинают искать со случая системы, для которой по крайней мере
понятно, как с помощью простой формулы связать Exc[ρ(r)] и ρ(r): однородного электронного

газа.



Электронная плотность

E[ρ] = Ts[ρ] + J[ρ] + Exc[ρ] + Vext[ρ]

Для однородного электронного газа для вычисления Exc[ρ] можно задать потенциал εxc, такой что

ELDA
xc =

∫
εxc(ρ(r))ρ(r) dr

Здесь зависимость εxc от ρ(r) именно функциональная (сложная функция).

Такое приближение называется приближением локальной плотности

([Local Density Approximation, LDA]).

Потому что энергия зависит по сути только от значения ρ(r) в каждой точке.
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εxc = εx + εc

Обменная часть:

(выводится из предположения об однородной дырке Ферми, из выражения для однородного электронного газа)

εx = Cxρ(r)
1/3

Формула, выведенная Слейтером и поэтому часто сокращается до S:

εx = −
3

4

(
3ρ(r)

π

)1/3

Тогда обменная энергия:

Ex = −
∫

dr
3

4

(
3

π

)1/3

ρ(r)4/3

Для εC такого простого выражения нет, поэтому вычисляется методом Монте-Карло (для электронного
газа достаточно просто), а потом приближается какими-то аналитическими функциями.

Наиболее распространена формула Vosko, Wilk и Nusair, поэтому VWN.

Итого, конечный функционал LDA : SVWN, или SVWN5.
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SVWN5 и остальные LDA функционалы:

ELDA
xc =

∫
εxc(ρ(r))ρ(r) dr

Exc зависит только от значения ρ(r) в каждой точке («локальная плотность», “Local density”)

Простые, но при этом физичный (удовлетворяет требованиям для физичности функционала)

Плохие для молекул: в них не однородный электронный газ

Хорошие для систем, в которых есть подобие однородного электронного газа: (твёрдая

неорганика).

Но! Иногда даже для молекулярных систем приводит к хорошим результатам из-за взаи-

мокомпенсации ошибок в EX и E...
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GGA-функционалы

Шаг вперёд к идеальному функционалу:

EGGA
XC =

∫
εXC
(
ρ(r), |∇ρ(r)|

)
ρ(r)dr

Существенное улучшение по сравнению с LDA, особенно корреляции для больших значений

ρ(r) и ∇ρ(r)

Использует разделение на εx и εc, которые являются модификацией версий из LDA.

Часто также называют по первым буквам фамилий:

Для εx: Becke (B), Perdew, Burke, Erzerhoff (PBE), Perdew, Wang (PW), Xu, Goddard (X)

Для εc: Lee, Yang, Parr (LYP), Perdew (P), PBE, PW и т.д.

Конечное название – сочетание букв для εx и εc:

BLYP, XLYP, PBEPBE (часто просто PBE), BP86 и т. п.
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meta-GGA функционалы

Следующий шаг к идеальному функционалу:

EGGA
XC =

∫
εXC

(
ρ(r), |∇ρ(r)|, |∇2

ρ(r)|
)
ρ(r) dr

— пробовали, получается не очень хорошо

Лучше получается с плотностью кинетической энергии:

τ(r) =
1

2

N∑
i=1

ai|∇χ(r)|2

Emeta−GGA
XC =

∫
εXC
(
ρ(r), |∇ρ(r)|, τ(r)

)
ρ(r)) dr

Примеры TPSS, Minnesota функционалы группы Truhlar: M06-L, M11-L.

Для чистых функционалов (о которых мы говорили всё это время) добавляется буква L.
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post-GGA функционалы

Следующий шаг к идеальному функционалу:

Epost−GGA
xc =

∫
εxc

(
ρ(r), |∇ρ(r)|, |∇2

ρ(r)|, |∇2
ρ(r)|

)
ρ(r) dr

— нет, дальше уже это не работает

Самое главное — в особенности для сильно связанных систем плохо описывается Ex.
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Гибридные функционалы

Хитрый и сложный шаг к идеальному функционалу:

Идея: если всё равно в приближении Кона-Шема используются МО ЛКАО, то обменную энергию

можно посчитать для получающихся МО!

ϕi(r) =

∞∑
µ=1

ciµϕ̃µ

Dλσ =

N/2∑
j=1

c∗jλcjσ

fxµν = hµν +

K∑
λ

K∑
σ

Dλσ

(
−
1

2
(µσ|λν)

)

EHF
X =

1

2

∑
µ

∑
ν

DµνFx
µν

Но есть проблема: необходимо считать большую часть четырёхцентровых интегралов!
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Гибридные функционалы

Однако оно того стоит!

Для молекул получается настолько лучше метода Хартри-Фока (при схожих временах расчёта и

масштабируемости),

и лучше чистых (негибридных) функционалов, что вся современная DFT — это они.

Но есть одна проблема...

Как и в случае с Ts[ρ(r)] и T[ρ(r)], EHF
x это на та энергия Ex для идеального функционала!

Поэтому к ней чаще всего «подмешивают» часть обменной энергии из DFT. Т. е., например:

EPBE0
xc =

1

4
EHF

x +
3

4
EPBE

x + EPBE
C

EB3LYP
xc = ELDA

x + a0(E
HF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ELDA
c + ac(E

GGA
c − ELDA

c )

a0 = 0.2, ax = 0.72, ac = 0.81
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Гибридные GGA-функциналы

EPBE0
xc =

1

4
EHF

x +
3

4
EPBE

x + EPBE
C

EB3LYP
xc = ELDA

x + a0(E
HF
x − ELDA

x ) + ax(E
GGA
x − ELDA

x ) + ELDA
c + ac(E

GGA
c − ELDA

c )

a0 = 0.2, ax = 0.72, ac = 0.81

Для гибридных GGA-функционалов название чаще всего — как и не для гибридных с числом

подбираемых параметров между обленной и корреляционной частью.

Т.е. B3LYP — трёхпараметрический функционал.

PBE0 (также (только) в Gaussian PBE1PBE) — однопараметрический фунционал но с параметром

1/4 из первых принципов (поэтому и 0).

Другие примеры:

B1LYP, O3LYP, B3PW или B3PW91, REBPBE0 и т.д. (но не очень много)
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Гибридные meta-GGA функционалы

Гибридные meta-GGA функционалы? Конечно!

Прежде всего, функционалы группы Трулара из Минесотты:

M05, M05-2X, M06, M06-2X, M06-HF, ...,

Другие:

TPSSh, TPSS0, SCAN, ...
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Двойные гибридные функционалы

В каком направлении можно ещё улучшить функционал?

Использонвание Хартри-Фоковского обмена существенно улучшает Ex;

Но Ec остаётся плохой, в особенности при малых значениях ρ(r) и ∇ρ(r)...
а это фактически все невалентные взаимодействия

Решение — использовать энергию корреляции из пост-хартрифоковских методов (прежде всего

реории возмущения (MP2, MP4, и т. п.)

Двойные гибридные функционалы в основном использоуют энергию из теории возмущения Мёллера-

Плессета второго порядка (MP2):

EB2PLYP
xc = (1− cHF)EGGA

x + cHFEHF
x + (1− cMP2

)EGGA
c + cMP2EMP2

c

Другие примеры: PBE0-DH

С ними всё сильно лучше (и чем HF+MP2), но сложность повышается от O(N4
) до O(N5

), и из-за
большого числа интегралов сложности с вычислением 2-x производных...
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Эмпирические поправки для дисперсионных взаимодействий

Как улучшить описание дисперсионных взаимодействий меньшей ценой?

Введением эмпиричекой поправки: (-D1), -D2, -D3, -D3BJ, -D4 и т.д.

Формульно они похожи на используемые в MM (и зависят тольно от типа атома):

ED2
disp,ij = fd,6(rij)

C6ij

r6ij

C6ij =
√

C6iiC6jj

fd,6(rij) — сглаживающая функция (dumping), призванная корректно описывать малый вклад

поправки вблизи.

ED3
disp,ij = fd,6(rij)

C6ij

r6ij
+ fd,8(rij)

C8ij

r8ij
В этой версии коэффициенты C не постоянные для типа атома, а зависят от окружения атома. Но

оставаясь полностью эмпирическими, вычисления очень быстрыми.
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